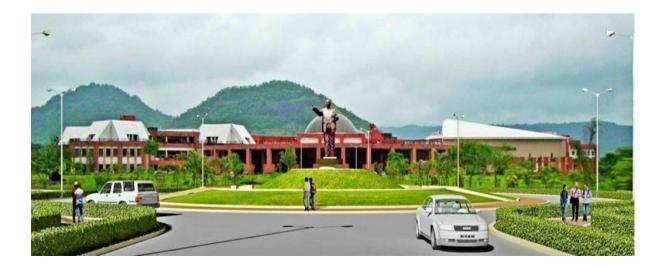
Dr. Babasaheb Ambedkar Technological University (Established as University of Technology in the State of Maharashtra) (Under Maharashtra Act No. XXIX of 2014) P.O. Lonere, Dist. Raigad, Pin 402 103, Maharashtra Telephone and Fax. 02140 - 275142 www.dbatu.ac.in



CURRICULUM UNDER GRADUATE PROGRAMME

B.TECH.

3rd Year MECHANICAL ENGINEERING/MECHANICAL

ENGINEERING(SANDWICH) ACADEMIC YEAR2023-2024

Abbreviations

BSC: Basic Science Course ESC: Engineering Science Course PCC: Professional Core Course PEC: Professional Elective Course OEC: Open Elective Course HSSMC: Humanities and Social Science including Management Courses

PROJ: Project work, seminar and internship in industry or elsewhere

B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2022-23)

Course Structure for Semester V

B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2022-23)

		Seme	ster V								
Course	Course Code	Course Code Course Title			Teaching Scheme			Evaluation Scheme			
Category			L	Т	Р	CA	MSE	ESE	Total	No. of Credits	
PCC 8	BTMC 501	Heat Transfer	3	1	-	20	20	60	100	4	
PCC 9	BTMC 502	Machine Design – I	3	1	-	20	20	60	100	4	
PCC 10	BTMC 503	Theory of Machines- II	3	1	-	20	20	60	100	4	
PEC 2	BTMPE 504A-C BTAPE50 <mark>4</mark> A,D	Elective-II	3	-	_	20	20	60	100	3	
OEC 1	BTMOE 505A-D	Open Elective-I	3	-	-	20	20	60	100	3	
PCC 11	BTMC 506	Applied Thermodynamics	<mark>3</mark>		-	<mark>20</mark>	<mark>20</mark>	<mark>60</mark>	<mark>100</mark>	<mark>3</mark>	
PCC12	BTMCL 507	Mechanical Engineering Lab – III	-	-	6	60	-	40	100	3	
PROJ- <mark>3</mark>	BTMI 40 <mark>8</mark>	IT – 2 Evaluation	-	-	-	-	-	100	100	1	
		Total	<mark>18</mark>	3	<mark>6</mark>	<mark>180</mark>	<mark>120</mark>	<mark>500</mark>	800	<mark>2</mark> 5	

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

Elective II

Sr. No	Course code	Course Name
1	BTMPE504A	Refrigeration and Air conditioning
2	BTMPE504B	Steam and Gas Turbines
3	BTMPE504C	Engineering Tribology
4	BTAPE50 <mark>4</mark> A	Fundamentals of Automobile Design
5	BTAPE504D	Automobile Engineering

Open Elective I

Sr.No.	Course code	Course Name
1	BTMOE505A	Solar Energy
2	BTMOE505B	Renewable Energy Sources
3	BTMOE505C	Human Resource Management
4	BTMOE505D	Product Design Engineering

Course Structure for Semester VI B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2022-23)

		Semes	ter VI							
Course	Course Code	Course Title	Teaching Scheme			Evaluation Scheme				No. of
Category			L	Т	Р	CA	MSE	ESE	Total	Credits
PCC12	BTMC 601	Manufacturing Processes- II	3	1	-	20	20	60	100	4
PCC13	BTMC 602	Machine Design-II	3	1	-	20	20	60	100	4
PEC3	BTMPE 603A-C BTAPE 603C,E	Elective-III	3		-	20	20	60	100	3
PEC4	BTMPE 604A-D BTAPE 604B	Elective-IV	3		-	20	20	60	100	3
OEC2	BTMOE 605A-E	Open Elective-II	3	-	-	20	20	60	100	<mark>3</mark>
PCC14	BTMCL 606	Mechanical Engineering Lab – IV	-	-	6	60	-	40	100	3
PROJ-4	BTMS607	B Tech Seminar	-	-	<mark>2</mark>	<mark>60</mark>		<mark>40</mark>	<mark>100</mark>	1
PROJ- <mark>5</mark>	BTMP 608	Mini Project (TPCS)	-	-	2	60	-	40	100	<mark>1</mark>
PROJ- <mark>6</mark>	BTMI 60 <mark>9</mark> (IT-3)	Field Training / Industrial Training (minimum of 4 weeks which can be completed partially in fifth semester and sixth semester or in one semester itself).	-	-	-	-	-	-	-	Credits to be evaluated in Sem VII
		Total	15	2	<mark>10</mark>	<mark>280</mark>	100	<mark>420</mark>	<mark>800</mark>	<mark>2</mark> 2

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

Elective III:

Sr.No	Course code	Course Name
1	BTMPE603A	IC Engines
2	BTMPE603B	Mechanical Vibrations
3	BTMPE603C	Machine Tool Design
4	BTMPE603D	Engineering Metrology and Quality Control
5	BTAPE603C	Advance Automobile Design
6	BTAPE603E	E – Vehicles

Elective IV:

SrNo	Course code	Course Name
1	BTMPE604A	Process Equipment Design
2	BTMPE604B	Product Life Cycle Management
3	BTMPE604C	Finite Element Method
4	BTMPE604D	Robotics
5	BTAPE604B	Computational Fluid Dynamics

Open Elective II:

Sr.No	Course code	Course Name
1	BTMOE605A	Quantitative Techniques and Project Management
2	BTMOE605B	Nanotechnology
3	BTMOE605C	Energy Conservation and Management
4	BTMOE605D	Wind Energy
5	BTMOE605E	Introduction to Probability Theory and Statistics

Semester - V

Heat Transfer

BTMC 501	PCC 8	Heat Transfer	3-1-0	4 Credits		
Toophing Sohow		Examination Scheme:				
Teaching Schem			0016 1			
Lecture: 3 hrs/week Continuous Assessment: 20 Marks						
Tutorial: 1 hr/we	ek		Mid Semester Exam: 20 Marks			
		End Semester Exam: 60	End Semester Exam: 60 Marks (Duration 03 hrs)			

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Explain the laws of heat transfer and deduce the general heat conduction equation and to explain it for 1-D steady state heat transfer in regular shape bodies
CO2	Describe the critical radius of insulation, overall heat transfer coefficient, thermal conductivity and lumped heat transfer
CO3	Interpret the extended surfaces
CO4	Illustrate the boundary layer concept, dimensional analysis, forced and free convection under different conditions
CO5	Describe the Boiling heat transfer, Evaluate the heat exchanger and examine the LMTD and NTU methods applied to engineering problems
CO6	Explain the thermal radiation black body, emissivity and reflectivity and evaluation of view factor and radiation shields

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1			1				1			
CO2	3	2			1							
CO3	3	1			2		2		1			
CO4	3	3		1	1				1			
CO5	3	3	3		1		2					
CO6	2	3		2	2		2		1			

Machine Design - I

BTMC 502	PCC 9	Machine Design - I	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Strength of Materials

Course Outcomes: At the end of the course, students will be able to:

CO1	Formulate the problem by identifying customer need and convert into design Specification
CO2	Understand component behavior subjected to loads and identify failure criteria
CO3	Analyze the stresses and strain induced in the component
CO4	Design of machine component using theories of failures
CO5	Design of component for finite life and infinite life when subjected to fluctuating load
CO6	Design of components like shaft, key, coupling, screw and spring

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1						1				1
CO2	3	2		1		1		1		1		1
CO3	1	1				1		1		1		1
CO4	3	3	2	1		2		1		1		1
CO5	1	1				1		1		1		1
CO6	2	2	2	1		1		1		1		1

Dr. Babasaheb Ambedkar Technological University, Lonere Theory of Machines - II

BTMC 503	PCC 10	Theory of Machines - II	3-1-0	4 Credits
----------	--------	-------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Engineering Mechanics, TOM - I

	Course Outcomes. At the end of the course, students will be able to.
CO1	Identify and select type of belt drive for a particular application
CO2	Evaluate gear tooth geometry and select appropriate gears, gear trains
CO3	Characterize flywheels as per application requirement
CO4	Understand gyroscopic effects in ships, aeroplanes, and road vehicles.
CO5	Understand free and forced vibrations of single degree freedom systems

Course Outcomes: At the end of the course, students will be able to:

Course Outcomes		Program Outcomes										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	1		2		1			2		2
CO2	2	3					1					3
CO3		2		1								
CO4	2	3		2								3
CO5	2	3		3								3

Refrigeration and Air Conditioning

BTMPE504A	PEC 2	Refrigeration and Air Conditioning	3-0-0	3 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Steam and Gas Turbine

BTMPE504B	PEC 2	Steam and Gas Turbine	3-0-0	3 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	State Various properties of Steam, Draw P-V, T-s, H-s (Mollier) diagrams for steam, Describe Theoretical steam turbine cycle.
CO2	Define and Understand Various Types of Design of Turbines.
CO3	Perform analysis of given steam and gas Turbine power plant (Efficiencies, Power Output, Performance)
CO4	Study and apply various Performance improvement Techniques in steam and gas Turbines
CO5	Assess factors influencing performance of thermal power plants,
CO6	Apply various maintenance procedures and trouble shootings to Turbines.

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1										
CO2	1	1										
CO3		2			2							
CO4	1				1	2	2					
CO5	1	2										
CO6	1	1		3								

Engineering Tribology

BTMPE504C	PEC2	Engineering Tribology	3-0-0	Credits		
Teaching Scheme:Examination Scheme:						
Lecture: 3 hrs/week Continuous Assessment: 20 Marks						
Mid Semester Exam: 20 Marks						
	End Semester Exam: 60 Marks (Duration 03 hrs)					

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the basic concepts and importance of tribology.
CO2	Evaluate the nature of engineering surfaces, their topography and surface characterization techniques
CO3	Analyze the basic theories of friction and frictional behavior of various materials
CO4	Select a suitable lubricant for a specific application
CO5	Compare different wear mechanisms
CO6	Suggest suitable material combination for tribological design.

Mapping of course outcomes with program outcomes

Course					F	rogram	Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2											
CO2	2	1	2	2		1						
CO3	2	3	1	2	1	1	1					
CO4	2	2	2		1	1	2		1		1	
CO5	1	1	1	1	1							
CO6	2	2	2		2	2	2		1	1	1	

Fundamentals of Automobile Design

BTAPE504A	Automobile Design (Product Design, PLM, CAE, Catia)	PEC 2	3L-0T-0P	3 Credits	
-----------	--	-------	----------	-----------	--

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Identify the different parts of the automobile.
CO2	Explain the working of various parts like engine, transmission, clutch, brakes etc.,
CO3	Demonstrate various types of drive systems.
CO4	Apply vehicle troubleshooting and maintenance procedures.

Course					Pı	ogram	Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1										
CO2	1	2		2		1						
CO3	1	1		1	1							
CO4	2			3	1							

Mapping of course outcomes with program outcomes

Automobile Engineering

BTAPE504D	PEC2	Automobil	e Engineering	3-0-0				
Teaching Scher	me		Examination Scheme					
	Lecture: 3 Hrs/week			Continuous Assessment: 20 Marks				
				Mid semester examination: 20 Marks				
			End Semester Exam: 60 Marks (3 hrs					
			duration)					

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to :

CO1	Identify the different parts of the automobile.
CO2	Explain the working of various parts like engine, transmission, clutch, brakes etc.,
CO3	Demonstrate various types of drive systems; front and rear wheels, two and four wheel
drive	
CO4	Apply vehicle troubleshooting and maintenance procedures.
CO5	Analyze the environmental implications of automobile emissions. And suggest suitab
	regulatory modifications.

CourseOu		Program Outcomes										
tcomesC	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8 F	9 P	O10PC	11PO	2
01	2	1										
CO2	1	2		2		1						
CO3	1	1		1	1							
CO4	2			3	1							
CO5		2			1	1	2					
CO6	1		2			2						

Open Elective-I

Solar Energy

BTMOE505A	OEC1	Solar Energy	3-0-0	3 credits			
Teaching Scheme:Examination Scheme:							
Lecture: 3 hrs/we	Lecture: 3 hrs/week Continuous Assessment: 20 Marks						
		Mid Semester Exam: 20	Mid Semester Exam: 20 Marks				

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

End Semester Exam: 60 Marks(Duration 03 hrs)

CO1	Describe measurement of direct, diffuse and global solar radiations falling on horizontal and inclined surfaces.
CO2	Analyze the performance of flat plate collector, air heater and concentrating type collector.
CO3	Understand test procedures and apply these while testing different types of collectors.
CO4	Study and compare various types of thermal energy storage systems.
CO5	Analyze payback period and annual solar savings due to replacement of conventional systems.
CO6	Design solar water heating system for a few domestic and commercial applications.

Course						Progra						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1											
CO2	1	2				1						
CO3	2			1	1		2					
CO4	1	1										
CO5		2			1							
CO6			2	3		1	1					

Renewable Energy Sources

BTMOE505B OEC1	Renewable Energy Sources	3-0-0	Credits				
Teaching Scheme:	Examination Scheme:	Examination Scheme:					
Lecture: 3 hrs/week	Continuous Assessment	Continuous Assessment: 20 Marks					
	Mid Semester Exam: 20	Mid Semester Exam: 20 Marks					
	End Semester Exam: 60	End Semester Exam: 60 Marks (Duration 03 hrs)					

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Explain the difference between renewable and non-renewable energy
CO2	Describe working of solar collectors
CO3	Explain various applications of solar energy
CO4	Describe working of other renewable energies such as wind, biomass, nuclear

Mapping of course outcomes with program outcomes

			11					1 0					
Cour	rse		Program Outcomes										
Outco	mes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO	1	1	2	3		2	3	3	3	2	2		2
CO	2	1	1	3	1	2	3	3	3	2	2		2
CO	3	2	1	1				3	2		1		2
CO	4	3	3			2	3	3	2				1

Human Resource Management

BTMOE505C OEC1	Human Resource Management	3-0-0	3 Credits
----------------	---------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:			
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks			
	Mid Semester Exam: 20 Marks			
	End Semester Exam: 60 Marks(Duration 03 hrs)			

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Describe trends in the labor force composition and how they impact human resource
COI	management practice.
CO2	Discuss how to strategically plan for the human resources needed to meet
	organizational goals and objectives.
CO3	Define the process of job analysis and discuss its importance as a foundation for human
COS	resource management practice
CO4	Explain how legislation impacts human resource management practice.
CO5	Compare and contrast methods used for selection and placement of human resources.
CO6	Describe the steps required to develop and evaluate an employee training program
CO7	Summarize the activities involved in evaluating and managing employee performance.
CO8	Identify and explain the issues involved in establishing compensation systems.

Course	Progr	am Ou	tcomes	5								
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1					2						1	
CO2											3	
CO3										2		
CO4								2		2		
CO5									2	3		
CO6										1		3
CO7										2	2	
CO8											2	

Product Design Engineering

BTMOE505D	OEC1	Product Design Engineering – I	3-0-0	3 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3hr/Week	Continuous Assessment: 20
	MarksMid Semester Exam: 20
	Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

• Pre-requisites: Knowledge of Basic Sciences, Mathematics and Engineering Drawing

Course Outcomes: At the end of the course, students will be able to

- CO 01. Understand the need for product design
- CO 02. Apply various methods of idea generation
- CO 03. Understand various types of prototypes and testing methods
- CO 04. Understand the product economics at production scale
- CO 05. Appreciate the environmental concerns in product lifecycle

Applied Thermodynamics

BTMC506	PCC11	Applied	d Thermodynamics	3-0-0	4 Credits			
					1			
Teaching Schem	ne:		Examination Scheme:					
Lecture: 3 hrs/we	eek		Continuous Assessment: 20 Marks					
Tutorial: 0 hr/we	ek		Mid Semester Exam: 20 Marks					
			End Semester Exam: 60 Marks (Duration 03 hrs)					

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Define the terms like calorific value of fuel, stoichiometric air-fuel ratio, excess air, equivalent evaporation, boiler efficiency, etc. Calculate minimum air required for combustion of fuel.
CO2	Studied and Analyze gas power cycles and vapour power cycles and derive expressions for the performance parameters like thermal efficiency.
CO3	Classify various types of boilers, nozzle, steam turbine and condenser used in steam power plant.
CO4	Classify various types condenser, nozzle and derived equations for its efficiency.
CO5	Draw P-v diagram for single-stage reciprocating air compressor, with and without clearance volume, and evaluate its performance. Differentiate between reciprocating androtary air compressors.

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1										
CO2	1	2										
CO3	1											
CO4			1									
CO5		2										

Mechanical Engineering Lab – III

BTMCL 507	PCC 11	Heat Transfer Lab.+Theory of Machines Lab II + Machine Design Practice-I	0-0-6	3 Credit
-----------	--------	--	-------	----------

Practical Scheme:	Examination Scheme:
Practical: 6 hrs/batch	Continuous Assessment: 60 Marks
	External Exam: 40 Marks

Group A (Heat Transfer Lab)

List of Practical's/Experiments/Assignments (Any Three from Group

- 1. Determination of thermal conductivity of a metal rod.
- 2. Determination of thermal conductivity of insulating powder.
- 3. Determination of conductivity of a composite slab.
- 4. Temperature is distribution on a fin surface.
- 5. Determination of film heat transfer coefficient for natural convection.
- 6. Determination of film heat transfer coefficient for forced convection.
- 7. Determination of heat transfer coefficient for cylinder in cross flow in forced convection.
- 8. Performance of Double pipe Heat Exchanger/Shell and Tube Heat Exchanger.
- 9. Determination of emissivity of a metal surface.
- 10. Determination of Stefan Boltzman's constant.
- 11. Determination of critical heat flux.
- 12. Calibration of measuring instruments pressure gauge, thermocouple, flow-meter etc.

Group B (Theory of Machines Lab - II)

Listof Practical's/Experiments/Assignments (Any Three from Group B)

Term work should consist of total 10 experiments from the below given list.

- 1. Study of various types of gear boxes such as Industrial gear box, Synchromesh gear box, Differential gear box, etc.
- 2. To draw conjugate profile for any general shape of gear tooth
- 3. To generate gear tooth profile and to study the effects under cutting and rack shift using models
- 4. To draw cam profile for various types of follower motions
- 5. To study various types of lubricating systems
- 6. To study various types of dynamometers
- 7. To determine speed vs. lift characteristic curve of a centrifugal governor and to find its coefficient of insensitiveness and stability.
- 8. Verification of principle of gyroscope and gyroscopic couple using motorized gyroscope
- 9. Study of any tow gyro-controlled systems
- 10. To study the dynamic balancing machine and to balance a rotor such as a fan or the rotor of electric motor or disc on the machine
- 11. To determine the natural frequency of damped vibration of a single degree of freedom system and to find its damping coefficient
- 12. To verify natural frequency of torsional vibration of two rotor system and position of node
- 13. To determine critical speed of a single rotor system
- 14. To determine transverse natural frequency of a beam experimentally using frequency measurement setup
- 15. To determine the frequency response curve under different damping conditions for the single degree of freedom system
- 16. To study shock absorbers and to measure transmissibility of force and motion.
- 17. Study of epicyclic gear train and its dynamic behavior

Mechanical Engineering Lab – III

BTMCL 507	PCC 11	Heat Transfer Lab.+ Theory of Machines Lab II + MachineDesign Practice-I	0-0-6	3 Credit
-----------	--------	--	-------	----------

Practical Scheme:	Examination Scheme:
Practical: 6 hrs/batch	Continuous Assessment: 60 Marks
	External Exam: 40 Marks

Group C (Machine Design Practice – I)

List of Practical's/Experiments/Assignments

1. The term work shall consist of 01 design projects based on syllabus of Machine Design-I. Design project shall consist of 2 full imperial size sheets-one involving assembly drawings with a part list and overall dimensions and other sheet involving drawings of individual components. Manufacturing tolerances, surface finish symbols and geometric tolerances should be specified, where ever necessary, so as to make it a working drawing.

Make the Project full on AutoCAD or on any 3D Design software print the full sheet on A3 size paper.

- 2. A design report giving all necessary calculations for the design of components and assembly should be submitted in a separate file. Sheets for one of the projects will be drawn using AutoCAD and computer print outs using plotter of the same will be attached along with the design report.
- 3. At least two assignments based on topics of syllabus of Machine Design-I.

IT – 2 Evaluation

BTMI408	IT – 2 Evaluation	PROJ-3	0L-0T-0P	1 Credits
(IT – 2)				

Teaching Scheme:	Examination Scheme:
Lecture:	Continuous Assessment: Mid Semester Exam: End Semester Exam: 100 Marks

Semester - VI

Manufacturing Processes - II

BTMC 601 PCC12 Manufacturing Processes - II 3-1-	-0 4 Credits
--	--------------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the process of powder metallurgy and its applications
CO2	Calculate the cutting forces in orthogonal and oblique cutting
CO3	Evaluate the machinability of materials
CO4	Understand the abrasive processes
CO5	Explain the different precision machining processes
CO6	Understanding plastic

Course					Pro	gram C	Outcon	nes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1			2					1
CO2	3	3										1
CO3	3	3	1	2	3							1
CO4	3	3	2									1
CO5	3	3	1	3								1
CO6	3	1	3	3	3			2				1

Machine Design - II

BTMC 602	PCC13	Machine Design - II 3-1-0 4 C					
Teaching Schen	ne:	Examination Scheme:					
Lecture: 3 hrs/we	eek	Continuous Assessment	: 20 Marks				
Tutorial: 1 hr/we	ek	Mid Semester Exam: 20	Mid Semester Exam: 20 Marks				
End Semester Exam: 60 Marks (Duration 03 hr							

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Define function of bearing and classify bearings.
CO2	Understanding failure of bearing and their influence on its selection.
CO3	Classify the friction clutches and brakes and decide the torque capacity and friction disk parameter.
CO4	Select materials and configuration for machine element like gears.
CO5	Design of elements like gears, belts for given power rating

Mapping of course outcomes with program outcomes

Course					F	rogran	n Outc	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1						1				1
CO2	3	2		1		1		1		1		1
CO3	1	1				1		1		1		1
CO4	3	3	2	1		2		1		1		1
CO5	1	1				1		1		1		1

IC Engines

BTMPE603A	PEC3	IC Engines	3-0-0	3Credits
-----------	------	------------	-------	----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Applied Thermodynamics – I

Course Outcomes: At the end of the course, students will be able to

CO1	Understand various types of I.C. Engines and Cycles of operation.
CO2	Analyze the effect of various operating variables on engine performance
CO3	Identify fuel metering and fuel supply systems for different types of engines
CO4	Understand normal and abnormal combustion phenomena in SI and CI engines
CO5	Evaluate performance Analysis of IC Engine and Justify the suitability of IC Engine for different application
CO6	Understand the conventional and non-conventional fuels for IC engines and effects of emission formation of IC engines, its effects and the legislation standards

mapping of course outcomes with program outcomes												
Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3						3					
CO2		2										
CO3	2											
CO4	2											
CO5					2		3					
CO6	2											

Mapping of course outcomes with program outcomes

Mechanical Vibration

BTMPE603B	PEC3	Mechanical Vibration	3-0-0	Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Theory of Machines - II

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the cause and effect of vibration in mechanical system
CO2	Formulate governing equation of motion for physical system
CO3	Understand role of damping, stiffness and inertia in mechanical system
CO	Analyze rotating system and calculate critical speeds
CO5	Estimate the parameters of vibration isolation system
CO6	Estimate natural frequencies and mode shapes of continuous system

Course						Prog	am Ou	itcome	S			
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	2	1	1					2
CO2	3	3	2	1	1							2
CO3	3	2	2	1	1							2
CO4	3	3	2	2	2							2
CO5	3	3	2	2	2		3					2
CO6	3	3	3	2								2

Machine Tool Design

BTMPE603C	PEC3	Machine Tool Design	3-0-0	3Credits
Teaching Schem	ne:	Examination Scheme:		

I caching benchic.	Examination Scheme.
Lecture: 2 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Machine design and Manufacturing processes-I

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand basic motion involved in a machine tool.
CO2	Design machine tool structures for conventional and CNC machines.
CO3	Design and analyze system for specified speeds and feeds.
CO4	Understand control strategies for machine tool operations.
CO5	Design of rotary and linear drive for machine tools.
CO6	Analyze machine tool structure for design accuracy.

Mapping of course outcomes with program outcomes

Course					Pı	ogram	Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	1	1				1	1	1
CO2	3	1	3	1	2	1	1		1	1	1	1
CO3	2	1	2	1	1	1			1	1	1	1
CO4	2	1	1	1	1	1	1			1	1	1
CO5	3	1	3	1	1	1	1		1	1	1	1
CO6	2	1	2	1	1	1	1		1	1	1	1

Engineering Metrology and Quality Control

BTMPE603D	PEC 3	Metrology and Quality Control	3-0-0	3 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Identify techniques to minimize the errors in measurement
CO2	Identify methods and devices for measurement of length, angle, and gear and thread parameters, surface roughness and geometric features of parts.
CO3	Choose limits for plug and ring gauges.
CO4	Explain methods of measurement in modern machineries
CO5	Select quality control techniques and its applications
CO6	Plot quality control charts and suggest measures to improve the quality of product and reduce cost using Statistical tools.

Course					Р	rogram	o Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				3								2
CO2		2	2		2							
CO3			2	3	2							
CO4						3						
CO5	1					2		3	3		3	2
CO6	1					2		3	3		2	2

Mapping of course outcomes with program outcomes

Advance Automobile Design

BTAPE603C	PEC3	Automobile Body Design	3-0-0	3Credits
Teaching Schem	ne:	Examination Schem	e:	
Lecture: 3 hrs/we	eek	Continuous Assessm	ent: 20 Marks	
		Mid Semester Exam:	20 Marks	
		End Semester Exam:	60 Marks (Dur	ration 03 hrs)

E Vehicles

BTAPE603E	E Vehicles	PEC 3	3L-0T-0P	3 Credits

Teaching Scheme:	Examination Scheme:
	Continuous Assessment: 20 Marks
Lecture: 3 hrs/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Process Equipment Design

DIVITEDOUT TECT TOCCSS Equipment Design 5-0-0 Creatis	BTMPE604A	PEC4	Process Equipment Design	3-0-0	Credits
---	-----------	------	--------------------------	-------	---------

Teaching Scheme:	Examination Scheme:
Lecture: 2 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the factors influencing design of pressure vessel
CO2	Calculate thickness and thickness variation for cylindrical storage tank
CO3	Estimation of thickness for thin and thick wall pressure vessels
CO4	Design of flange and gasket selection for cylindrical pressure vessels
CO5	Selection of various blade and baffle arrangement for agitators
CO6	Design of support for horizontal and vertical vessel

Mapping of course outcomes with program outcomes

	.											
Course					P	rogram	o Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1		1			1	1	1				1
CO2	2	2	1			1	1	1				1
CO3	2	2	2			1	1	1				1
CO4	2	2	2			1	1	1				1
CO5	2	2	1			1	1	1				1
CO6	2	2	2			1	1	1				1

Product Life Cycle Management

BT	MPE604B	PEC4	Product Life Cycle Management	3-0-0	3Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks Mid Semester Exam: 20 Marks End Semester Exam: 60 Marks (Duration 03 hrs)

Objectives: Establishing industry partnerships that guide, support, and validate PLM research and education activities assisting with the integration of PLM into College curricula and facilitating the PLM career opportunities.

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Outline the concept of PLM.
CO2	Illustrate the PDM system and its importance.
CO3	Illustrate the product design process.
CO4	Build the procedure for new product development.
CO5	Classify and compare various technology forecasting methods.
CO6	Outline the stages involved in PLM for a given product.

or cou		concomes with program outcomes										
Course Outcomes					P	rogram	Outcor	nes				
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1				1						1	
CO2	1				1		1				1	
CO3	1		1		1							
CO4	1		1		1						1	
CO5	1				1		1					
CO6	1				1				1			1

Mapping of course outcomes with program outcomes

Finite Element Method

BTMPE604C PEC4 Finite Element Method 3-0-0 3Cred					
	BTMPE604C	PEC4	Finite Element Method	3-0-0	3Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the basic principle of Finite element methods and its applications
CO2	Use matrix algebra and mathematical techniques in FEA
CO3	Identify mathematical model for solution of common engineering problem
CO4	Solve structural, thermal problems using FEA
CO5	Derive the element stiffness matrix using different methods by applying basic mechanics laws
CO6	Understand formulation for two- and three-dimensional problems

Mapping of course outcomes with program outcomes

Course					F	rogran	n Outc	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1		1				1		1	1
CO2	2	3	2	1	2	1		1			2	1
CO3	3	2	2	1	1				1		2	1
CO4	3	3	2	1	2		1		1		2	1
CO5	3	1	1		1		1				2	1
CO6	1	1	1						1		1	1

Robotics

BINFE004D FEC4 Robotics 3-0-0 5 Cledits	BTMPE604D	PEC4	Robotics	3-0-0	3 Credits
---	-----------	------	----------	-------	-----------

Teaching Scheme:	Examination Scheme:

Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	List the various components of a typical Robot, grippers, sensors, drive system and describe their functions
CO2	Calculate the word to joint and joint to word coordinates using forward and reverse transformations
CO3	Calculate the gripper forces, drive sizes, etc.
CO4	Develop simple robot program for tasks such as pick and place, arc welding, etc. using some robotic language such as VAL-II, AL, AML, RAIL, RPL, VAL
CO5	Evaluate the application of robots in applications such as Material Handling, process operations and Assembly and inspection
CO6	Discuss the implementation issues and social aspects of robotics

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1		1				3	1		
CO2	2	3	2	1	2	1			3	2		
CO3	3	2	2	1	1				3	2		
CO4	3	3	2	1	2		1		3	2		
CO5	3	1	1		1		1		3	2		
CO6	1	1	1						3	2		

Computational Fluid Dynamics

BTAPE604B	Fundamentals of Computational Fluid Dynamics	PEC 4	3L-0T-0P	3 Credits
-----------	---	-------	----------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to

CO1	Identify applications of finite volume and finite element methods to solve Navier-Stoke equations.
CO2	Evaluate solution of aerodynamic flows. Appraise & compare current CFD software. Simplif flow problems and solve them exactly.
CO3	Design and setup flow problem properly within CFD context, performing solid modeling usin CAD package and producing grids via meshing tool

CO4	Interpret both flow physics and mathematical properties of governing Navier-Stokes equation and define proper boundary conditions for solution.
CO5	Use CFD software to model relevant engineering flow problems. Analyse the CFD results Compare with available data, and discuss the findings

Mapping of course outcomes with program outcomes

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1		1				3	1		
CO2	2	3	2	1	2	1			3	2		
CO3	3	2	2	1	1				3	2		
CO4	3	3	2	1	2		1		3	2		
CO5	3	1	1		1		1		3	2		
CO6	1	1	1						3	2		

Open Elective-II

Quantitative Techniques in Project Management

BTMOE605A OEC 2	Quantitative Techniques in Project Management	3-1-0	4Credits
-----------------	--	-------	----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Engineering Mathematics-I/II/III

Course Outcomes: At the end of the course, students will be able to:

CO1	Define and formulate research models to solve real life problems for allocating limited resources by linear programming.
CO2	Apply transportation and assignment models to real life situations.
CO3	Apply queuing theory for performance evaluation of engineering and management systems.
CO4	Apply the mathematical tool for decision making regarding replacement of items in real life.
CO5	Determine the EOQ, ROP and safety stock for different inventory models.
CO6	Construct a project network and apply CPM and PERT method.

Course	Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	3	2				3	1	3	1
CO2	3	1	1	3	2				3	2	3	1
CO3	3	1	1	3	2				3	2	3	1
CO4	3	1	1	3	2	1			3	2	3	1
CO5	3	1	1	3	2	1			3	2	3	1
CO6	3	1	1	3	2	2			3	2	3	1

Nanotechnology

BTMOE605B	OEC2	Nanotechnology	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Demonstrate the understanding of length scales concepts, nanostructures and nanotechnology.							
CO2	To impart basic knowledge on various synthesis and characterization techniques involved in Nanotechnology							
CO3	To educate students about the interactions at molecular scale							
CO4	Evaluate and analyze the mechanical properties of bulk nanostructured metals and alloys, Nano-composites and carbon nanotubes.							
CO5	To make the students understand about the effects of using nanoparticles over conventional methods							

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		3	3	2	1		3		1	3
CO2	3	2			3	3	2				1	3
CO3	1	1	1	3	2				2	1		1
CO4	1	1		3	3	2	1		3		1	3
CO5	1	1	1	3	2				2	1		1

Energy Conservation and Management

BTMOE605C	OEC2	Energy Conservation and Management	3-1-0	4 Credits
Teaching Schem	ne:	Examination Scheme:		

Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand energy problem and need of energy management
CO2	Carry out energy audit of simple units
CO3	Study various financial appraisal methods
CO4	Analyze cogeneration and waste heat recovery systems
CO5	Do simple calculations regarding thermal insulation and electrical energy conservation

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3		2	3			2	2		2
CO2	1	1	3	1	2	3			2	2		2
CO3	2	1	1							1		2
CO4	3	3			2	3						1
CO5			3			2						1

Wind Energy

BTMOE605D	OEC2	Wind Energy	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand historical applications of wind energy
CO2	Understand and explain wind measurements and wind data
CO3	Determine Wind Turbine Power, Energy and Torque
CO4	Understand and explain Wind Turbine Connected to the Electrical Network AC and DC
CO5	Understand economics of wind energy

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1							2	2	2	1		1
CO2		3	2	1	3	2	2	2	2			1
CO3	3	3	1	1	2	2	1					1
CO4	3	3		1								1
CO5	3	2	1									1

Introduction to Probability Theory and Statistics

BTMOE605D Introduction to Probability Theory and Statistics	OEC 2	3L-1T-0P	4 Credits
---	-------	----------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial:1 hrs/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Objective

The objective of this course is

- (i) To acquire the knowledge of mean, median, mode, dispersion, etc.
- (ii) To develop the basics of Probability theory
- (iii) To get the knowledge of random variables and their expectations
- (iv) To establish acquaintance with various probability distributions
- (v) To Acquire the knowledge of correlation and regression.

Course Outcome

At the end of the course, the student will be able to

(i) Apply the concepts to find the measure of the central tendency, dispersion and moments forgrouped data

(ii) Make use of the correlation, and regression analyses to find the correlation and regression Coefficients

(iii) Observe and analyze the behavior of various discrete and continuous probabilityDistributions

(iv)Investigate the properties such as mathematical expectation and variance of the random Variables.

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	2	2	1			1	1		2
CO2	1	1		2	1		1					2
CO3	1	2		2	2	1				2		2
CO4	1	1	1	3	3	1			1			2

Dr. Babasaheb Ambedkar Technological University, Lonere Mechanical Engineering Lab – IV

BTMCL 606	PCC 18	Manufacturing Processes Lab - II+ +Machine Design Practice-II+ Applied Thermodynamics lab	0-0-6	3 Credit
-----------	--------	---	-------	----------

Practical Scheme:	Examination Scheme:
Practical: 6 hrs/batch	Continuous Assessment: 30 Marks
	End Semester Exam: 20 Marks

Group A (Manufacturing Processes Lab - II) List of Practical's /Experiments/Assignments (Any Three from GroupA)

- 1. Study of types of chips
- 2. Study of the effect of process parameters on cutting ratio and shear angle in oblique turning process
- 3. Study of the effect of process parameters on the surface roughness during oblique turning process
- 4. Study of the effect of cutting fluid on surface roughness during oblique turning process
- 5. Study of the effect of process parameters on tool wear during oblique turning process
- 6. Study of the effect of process parameters on cutting forces in oblique turning process
- 7. Study of the effect of process parameters on cutting forces in end milling process
- 8. To develop a manual part program of a given component on CNC Lathe using G and M codes.
- 9. To develop a manual part program of a given component on CNC Lathe using stockremoval cycle.
- 10. To develop a manual part program of a given component on CNC Lathe using canned cycle.
- 11. To develop a manual part program of a given component on CNC Milling machine using G and M code.
- 12. To develop a manual part program of a given component on CNC Milling machine using pocket milling cycle.
- 13. To develop a manual part program of a given component on CNC Milling machine using scanned cycle.
- 14. To examine the effect of parameters on MRR and TWR in Electro Discharge Machining (EDM).
- 15. To evaluate machining accuracy in EDM.
- 16. Demonstration on Wire-EDM
- 17. Industrial visit to study manufacturing practices.

Group B (Machine Design Practice - II)

List of Practical's/Experiments/Assignments

- 1. The term work shall consist of 01 design projects based on syllabus of Machine Design-II. Design project shall consist of 2 full imperial size sheets-one involving assembly drawings with apart list and Overall dimensions and other sheet involving drawing so find Individual Components. Manufacturing tolerances, surface finish symbols and geometric tolerances should be specified, where ever necessary, so as to make it a working drawing Make the Project full on Auto-cad or on any 3D Design software print the full sheet on A3 size paper.
- 2. A design report giving all necessary calculations for the design of components and assembly should be submitted in a separate file. Sheets for one of the projects will be drawn using AutoCAD and computer printout using plotter of the same will be attached along with the design report.
- 3. At least two assignments based on topics of syllabus of Machine Design-II.

Group C (Elective - III)

Perform any FIVE Practical's/ Assignments

- 1. Determination of calorific value by Bomb calorimeter
- 2. Measurement of dryness fraction of steam using separating & throttling calorimeter.
- 3. Trial on boiler
- 4. Trial on convergent/convergent-divergent type nozzle
- 5. Performance evaluation of steam turbine (Reaction / Impulse).
- 6. Performance evaluation of surface condenser.
- 7. Flue gas analysis using emission measuring instruments
- 8. Study & trial on single stage/two-stage reciprocating air compressor
- 9. Trial on centrifugal blower
- 10. Visit to appropriate industry to study and experience some of the above listed systems

B. Tech Seminar

|--|

Teaching Scheme:	Examination Scheme:
Practical: hrs/week	Continuous Assessment: 60 Marks
	Mid Semester Exam:
	End Semester Exam: 40 Marks
	End Semester Exam: 40 Marks

Objective:

- To expose and make students aware with latest research and research publications
- To understand the research and research publication, references, citation
- To enhance the presentation skill
- To enhance the report writing
- To make the student aware about research publication sites Students are expected to prepare a seminar report on the chosen topic/area

selected with the discussion of chosen guide based on the available literature on the chosen topic.

Mini Project (TPCS)

BTAP608	Mini Project (TPCS)	PROJ-4	0L-0T-2P	1 Credits
---------	---------------------	--------	----------	-----------

Teaching Scheme:	Examination Scheme:
Practical: 2 hrs/week	Continuous Assessment: 60 Marks Mid Semester Exam: End Semester Exam: 40 Marks(Duration 03 hrs)

Students are expected to carry out a mini project under a project guide based on the chosen area. The project may be prototype/software based which may demonstrate Engineering application or community service. After completion the project work it is necessary that student should prepare a project report under the supervision of the assign guide and present before the committee.