Dr. Babasaheb Ambedkar Technological University (Established as University of Technology in the State of Maharashtra) (Under Maharashtra Act No. XXIX of 2014) P.O. Lonere, Dist. Raigad, Pin 402 103, Maharashtra Telephone and Fax. 02140 - 275142 www.dbatu.ac.in

CURRICULUM UNDER GRADUATE PROGRAMME

B.TECH.

2nd Year MECHANICAL ENGINEERING/MECHANICAL

ENGINEERING(SANDWICH) ACADEMIC YEAR2023-2024

Abbreviations

BSC: Basic Science Course ESC: Engineering Science Course PCC: Professional Core Course PEC: Professional Elective Course OEC: Open Elective Course HSSMC: Humanities and Social Science including Management Courses

PROJ: Project work, seminar and internship in industry or elsewhere

Course Structure for Semester III B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2022-23)

Semester III													
Course	Course Code	Course Title	Teacl	ning Sch	eme	E	No. of						
Category			L	Т	Р	CA	MSE	ESE	Total	Credits			
BSC7	BTBS301	Engineering Mathematics – III	3	1	-	20	20	60	100	4			
PCC1	BTMC302	Fluid Mechanics	3	1	-	20	20	60	100	4			
PCC2	BTMC303	Thermodynamics	3	1	-	20	20	60	100	4			
ESC10	BTMES304	Materials Science and Metallurgy	3	1	-	20	20	60	100	4			
PCC3	BTMCL305	Machine Drawing and CAD Lab	-	-	4	60	-	40	100	2			
PCC4	BTMCL306	Mechanical Engineering Lab – I	-	-	4	60	-	40	100	2			
PROJ-2	BTES209P	IT – 1 Evaluation	-	-	-	-	-	100	100	1			
		Total	12	4	<mark>8</mark>	<mark>200</mark>	80	<mark>420</mark>	<mark>700</mark>	<mark>21</mark>			

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core CoursePEC

= Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC =

Humanities and Social Science including Management Courses

Course Structure for Semester IV

B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2022-23)

		Semes	ter IV							
Course	Course Code	Course Title	Teac	ching Sc	heme	Ev	aluatio			
Category			L	Т	Р	CA	MSE	ESE	Tota l	No. of Credits
PCC 5	BTMC401	Manufacturing Processes – I	3	1	-	20	20	60	100	4
PCC 6	BTMC402	Theory of Machines-I	3	1	-	20	20	60	100	4
HSSMC3	BTHM403	Basic Human Rights	3	-	-	20	20	60	100	3
ESC11	BTMES404	Strength of Materials	3	1	-	20	20	60	100	4
PEC 1	BTMPE405A- <mark>C</mark>	Elective-I	3	-	-	20	20	60	100	3
PCC7	BTMCL406	Mechanical Engineering Lab-II	-	-	4	60	-	40	100	2
PROJ- <mark>3</mark>	BTMI40 <mark>7</mark>	Field Training /Industrial Training (minimum of 4 weeks which can be completed partially in the third and fourth semester or in one semester itself)	-	-	-	-	-	-	-	Credits to be evaluated in Sem V
	•	Total	15	4	<mark>4</mark>	<mark>160</mark>	100	<mark>340</mark>	<mark>600</mark>	<mark>20</mark>

PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

Elective I

Sr. No	Course code	Course Name
<mark>1</mark>	BTMPE405 <mark>A</mark>	Numerical Methods in Engineering
<mark>2</mark>	BTMPE405 <mark>B</mark>	Sheet Metal Engineering
<mark>3</mark>	BTMPE405 <mark>C</mark>	Fluid Machinery

Semester III

Engineering Mathematics-III

BTBS301	Engineering Mathematics-III	BSC 7	3L-1T-0P	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Course Objectives:

After completion of the course, students will have adequate background, conceptual clarity and knowledge of appropriate solution techniques related to:

- 1. Linear differential equations of higher order using analytical methods and numerical methods applicable to Control systems and Network analysis.
- 2. Transforms such as Fourier transform, Laplace transform and applications to Communication systems and Signal processing.
- 3. Vector differentiation and integration required in Electro-magnetic and Wave theory.
- 4. Complex functions, conformal mappings, contour integration applicable to Electrostatics, Digital filters, Signal and Image processing.

Course Outcomes:

On completion of the course, students will be able to:

- Solve higher order linear differential equation using appropriate techniques for modeling and analyzing electrical circuits.
- Solve problems related to Fourier transform, Laplace transform and applications to Communication systems and Signal processing.
- Obtain Interpolating polynomials, numerically differentiate and integrate functions, numerical solutions of differential equations using single step and multi-step iterative methods used in modern scientific computing.

- Perform vector differentiation and integration, analyze the vector fields and apply to Electromagnetic fields.
- Analyze conformal mappings, transformations and perform contour integration of complex functions in the study of electrostatics and signal processing.

Fluid Mechanics

BTMC302	PCC 1	Fluid Mechanics	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs./week	Continuous Assessment: 20 Marks
Tutorial: 1 hr./week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs.)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

Course Outcomes	Content	Level
CO1	Explain basic properties of fluid, fluid statics, kinematics and dynamics.	Understanding
CO2	Identify various types of flow, flow patterns and their significance.	Understanding
CO3	Explain concepts of flow through pipes, boundary layer theory, forces on immersed bodies and dimensionless parameters.	Understanding
CO4	Derive various equations in fluid mechanics such as Euler's, Bernoulli's, Momentum, Continuity etc.	Apply
CO5	Solve the problems related to properties of fluid, fluid kinematics, fluid dynamics, laminar flow, pipe flow, dimensional analysis, boundary layer theory, and forces on immersed bodies.	Apply

Course		Program Outcomes														
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12				
CO1	2															
CO2	2															
CO3	2															
CO4	2															
CO5	3	2														

Thermodynamics

BTMC303	PCC2	Thermodynamics	3-1-0	4 Credits						
Teaching Scher	me:	Examination Sche	Examination Scheme:							
Lecture: 3 hrs/w	'eek	Continuous Assessr	Continuous Assessment: 20 Marks							
Tutorial: 1 hr/w	eek	Mid Semester Exan	Mid Semester Exam: 20 Marks							
		End Semester Exam	n: 60 Marks(Dur	ation 03 hrs)						

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

COL	Define the terms like system, boundary, properties, equilibrium, work, heat, ideal
COI	gas, entropy etc. used in thermodynamics.
CO^{2}	Studied different laws of thermodynamics and apply these to simple thermal
02	systems to study energy balance.
CO3	Studied Entropy, application and disorder.
CO4	Studied various types of processes like isothermal, adiabatic, etc. considering system
C04	with ideal gas and represent them on p-v and T-s planes.
COS	Represent phase diagram of pure substance (steam) on different thermodynamic
COS	planes like p-v, T-s, h-s, etc. Show various constant property lines on them.

Course					Р	rogran	n Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1										
CO2	1	2	1									
CO3		1	1									
CO4	2											
CO5	1	1										

Material Science and Metallurgy

BTMES304	ESC10	Materials Science and Metallurgy	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Study various crystal structures of materials
CO2	Understand mechanical properties of materials and calculations of same using
002	appropriate equations
CO3	Evaluate phase diagrams of various materials
CO4	Suggest appropriate heat treatment process for a given application
CO5	Prepare samples of different materials for metallography
C06	Recommend appropriate NDT technique for a given application

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1									
CO2	3	2	2	3	2							
CO3	2	1	2	1	1							
CO4	1	2	2	1	2	1	2	1	1	1		
CO5	1	1	1	3	2		1		1			
CO6	1	1	2	2	2	1	2		1	1		

Machine Drawing and CAD Lab

			0		
В	TMCL305	PCC3	Machine Drawing and CAD	0-0-4	2 Credits

Teaching Scheme:	Examination Scheme:
Practical: 4 hrs/week	Continuous Assessment: 60 Marks
	External Exam: 40 Marks

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Interpret the object with the help of given sectional and orthographic views.
CO2	Construct the curve of intersection of two solids
CO3	Draw machine element using keys, cotter, knuckle, bolted and welded joint
CO4	Assemble details of any given part. i. e. valve, pump, machine tool part etc.
CO5	Represent tolerances and level of surface finish on production drawings
CO6	Understand various creating and editing commands in Auto Cad

Course Outcomes					Pr	ogram	Outco	omes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
CO1	2								3	2		1
CO2	2	1							2	1		1
CO3	2								2	1		
CO4	2	2			1				2	1		1
CO5	1	1			1				2	1		1
CO6	1	1			1				2	2		1

Mechanical Engineering Lab - I

|--|

Practical Scheme:	Examination Scheme:
Practical: 4 hrs/batch	Continuous Assessment: 60 Marks
	External Exam: 40 Marks

Group A (Fluid Mechanics)

List of Practicals/Experiments/Assignments (Any Five from Group A)

- 1. Flow visualization technique: characteristics of laminar and turbulent flow patterns using Helleshaw Apparatus.
- 2. Verification of Bernoulli's theorem
- 3. Determination of Critical Reynolds number using Reynolds Apparatus
- 4. Determination of pressure drop in pipes of various cross-sections
- 5. Determination of pressure drops in pipes of various pipe fittings etc.
- 6. Viscosity measurement using viscometer(at least one type)
- 7. Verification of momentum equation using impact of jet apparatus
- 8. Determination of metacentric height of a floating body
- 9. Calibration of a selected flow measuring device and Bourdon pressure gauge
- 10. Gauge and differential pressure measurements using various types of manometers, Bourdon type pressure gauge.
- 11. Demonstration of measurement using these instruments Lab.
- 12. Experiment to study hydraulic jump.

Group B (Material Science and Metallurgy)

List of Practical's/Experiments/Assignments (Any Four from Group B

- 1. Brinell Hardness Test
- 2. Rockwell Hardness test
- 3. Erichson Cupping Test
- 4. Magnaflux Test
- 5. Dye Penetrant Test
- 6. Specimen Preparation for Microscopy
- 7. Sulphur Print Test
- 8. Spark Test
- 9. Study and drawing of microstructures of plain carbon steels of varying carbon percentage
- 10. Study and drawing of microstructures of heat treated steels
- 11. Jominy End Quench Test
- 12. Study and drawing of microstructures of cast irons
- 13. Study and drawing of microstructures of non-ferrous alloys

14. Hardening of steels of varying carbon percentage

IT – 1 Evaluation

BTES209P	Internship – 1 Evaluation		PROJ-2	0L-0T-0F	1 Credits
(Internship – 1)					
Teaching Schem	e:	Examination Sch	eme:		
Lecture:		Continuous Assess	sment:		
		Mid Semester Exa	m:		
		End Semester Exa	m: 100 Mai	ks	

Semester IV Manufacturing Processes-I

BTMC401	PCC 5	Manufacturing Processes-I	3-1-0	4 Credits

Pre-Requisites: None

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Identify castings processes, working principles and applications and list various defects in metal casting
CO2	Understand the various metal forming processes, working principles and applications
CO3	Classify the basic joining processes and demonstrate principles of welding, brazing and soldering.
CO4	Study center lathe and its operations including plain, taper turning, work holding devices and cutting tool.
CO5	Understand milling machines and operations, cutters and indexing for gear cutting.
CO6	Study shaping, planning and drilling, their types and related tooling's

Course					Р	rogran	n Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1		1	1				1		1
CO2	2	2	1		1	1				1		1
CO3	2	1	1		1	1				1		1
CO4	1		1		1	1				1		1
CO5	2		1		1	1				1		1
CO6	1				1	1				1		1

Theory of Machines- I

BTMC402	PCC 6	Theory of Machines-I	3-1-0	4 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 1 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks(Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Define basic terminology of kinematics of mechanisms
CO2	Classify planar mechanisms and calculate its degree of freedom
CO3	Perform kinematic analysis of a given mechanism using ICR and RV methods
CO4	Introduction of different types of lubrication system.
COS	Perform kinematic analysis of slider crank mechanism using Klein's construction and
COS	analytical approach
CO6	Perform balancing of unbalance forces in rotating masses, different types of single/multi
	cylinder reciprocating engines in different positions.

Course					F	Program	n Outc	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				1								3
CO2				1								3
CO3	1	1		2								3
CO4	1											
CO5	1	1		3								2
CO6	1	1										2

Basic Human Rights

BTHM403	HSSMC3	Basic Human Rights	3-0-0	3 Credits			
Teaching Schen	ne:	Examination	Examination Scheme:				
Lecture: 3 hrs/we	eek	Continuous A	Continuous Assessment: 20 Marks				
		Mid Semester	Mid Semester Exam: 20 Marks				
End Semester Exam: 60 Marks(Duration 03							

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the history of human rights.
CO2	Learn to respect others caste, religion, region and culture.
CO3	Be aware of their rights as Indian citizen.
CO4	Understand the importance of groups and communities in the society.
COS	Realize the philosophical and cultural basis and historical perspectives of human
0.05	rights.
CO6	Make them aware of their responsibilities towards the nation.

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
CO1						2						
CO2												
CO3												
CO4									3			
CO5								2		2		
CO6												1

Strength of Materials

BTMES404	ESC11	Strength of M	laterials	3-1-0	4 Credits		
Teaching Sche	me:		Examination Schem	e:			
Lecture: 3 hrs/v	veek		Continuous Assessment: 20 Marks				
Tutorial: 1 hr/w	veek		Mid Semester Exam: 20 Marks				
			End Semester Exam: 60 Marks(Duration 03 hrs)				

Pre-Requisites: Engineering Mechanics

Course Outcomes: At the end of the course, students will be able to:

CO1	State the basic definitions of fundamental terms such as axial load, eccentric load,
	stress, strain, E, μ, principle stresses, etc.
CO2	Analyze the stresses and strain energy in different load cases
CO3	Design the columns based on deflection
CO4	Design a beam based on bending and shafts based on torsion
CO5	Analyze given beam for calculations of SF and BM
CO6	Calculate slope and deflection at a point on cantilever /simply supported beam
	using double integration, Macaulay's, Area-moment and superposition methods

Course	Prog	Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1				1				2
CO2	1	1	2	2								2
CO3	1	1	2	2		1						3
CO4	1	3	2	1								2
CO5	1	1	2	3								2

Numerical Methods in Mechanical Engineering

BTMPE405A	PEC 1	Numerical	Methods in Engineering	3-0-0	3 Credits				
Teaching Schem	Teaching Scheme:Examination Scheme:								
Lecture: 3 hrs/we	ek		Continuous Assessment: 20 Marks						
Tutorial: 0 hr/week Mid Semester Exam: 20 Marks									
			End Semester Exam: 60 Marks(Duration 03 hrs)						

Course Outcomes: At the end of the course, students will be able to:

CO1	Describe the concept of error
CO2	Illustrate the concept of various Numerical Techniques
CO3	Evaluate the given Engineering problem using the suitable Numerical Technique
CO4	Develop the computer programming based on the Numerical Techniques

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3		1	3							
CO2	3	3		1	3							
CO3	3	3		1	3							
CO4	3	3		1	3							

Sheet Metal Engineering

BTMPE405B PEC 1 Sheet Metal Engineering 3-0-0 3 Credi	_					
		BTMPE405B	PEC 1	Sheet Metal Engineering	3-0-0	3 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 0 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Recognize common manufacturing processes of Sheet Metal Fabrication
CO2	Understand the principles of design and fabricate of sheet metal products and recognize common material used in the industry
CO3	Distinguish Shearing, Drawing and Pressing etc. processes.
CO4	Know types of dies and formability.
CO5	Select mechanical or hydraulic presses for the given process

Course		Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	1	1	3	2				2	1		1	
CO2	3			1	3	2	3					2	
CO3	1	1		3	3	2	1		3		1	3	
CO4	3	3	1	1	3		1	1	1				
CO5	3	2			3	3	2				1	3	

Fluid Machinery

	BTMPE405C	PEC 1	Fluid Machinery	3-0-0	3 Credits
--	-----------	-------	-----------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 0 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand and apply momentum equation
CO2	Understand and explain Hydrodynamic Machines
CO3	Explain difference between impulse and reaction turbines
CO4	Find efficiencies, draw velocity triangles
CO5	Explain governing mechanisms for hydraulic turbines
CO6	Explain working of various types of pumps, draw velocity diagrams, do simple
	Calculations
CO7	Design simple pumping systems

Course		Program Outcomes													
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	3	2	1									1			
CO2	3		3				2					1			
CO3	3	2										1			
CO4	3	3	2									1			
CO5			3									1			
CO6	3	3	3	1	1							1			
CO7	3	3		3								1			

Mechanical Engineering Lab II

BTMCL406 PCC7	Manufacturing Processes Lab I+Theory of Machines Lab -I Strength of Materials Lab	0-0-4	2 Credit
---------------	---	-------	----------

Practical Scheme:	Examination Scheme:
Practical: 4 hrs/batch	Continuous Assessment: 60 Marks
	External Exam: 40 Marks

Group A (Manufacturing Processes Lab I) List of

Practical's/Experiments/Assignments (Any Three from GroupA)

Making a job with a process plan involving plain, step and taper turning as well thread cutting as operations on a Centre lathe.

- 1. Preparation of process planning sheet for a job including operations such as milling, drilling and shaping.
- 2. Making a spur gear using universal dividing head on milling machine.
- 3. Making a simple component by sand casting using a split pattern.
- 4. Cutting of a steel plate using oxyacetylene flame cutting /plasma cutting.
- 5. Making a butt joint on two stainless steel plates using TIG/MIG Welding.
- 6. An experiment on shearing operation.
- 7. An experiment on blanking operation.
- 8. An experiment on drawing operation

Group B (Theory of Machines Lab - I)

List of Practical's/Experiments/Assignments (Any Three from Group B)

1. Four sheets (half imperial size)

Graphical solution of problems on velocity, acceleration in mechanisms by relative velocity method, instantaneous center of rotation method and Klein's construction. At least one problem containing Corioli's component of acceleration.

2. Experiments (any 2

- a) Experimental determination of velocity and acceleration of Hooke's joint.
- b) Determination of displacement of slider-crank mechanism with the help of model and to plot velocity and acceleration curves from it.
- c) Experiment on Corioli's component of acceleration.

3. Assignment

Develop a computer program for velocity and acceleration of slider-crank mechanism.

Group C (Strength of Materials Lab)

List of Practical's/Experiments/Assignments (Any Three from Group C)

- 1. Tension test on ferrous and non-ferrous alloys (mid steel/cast iron/aluminum, etc.
- 2. Compression test on mild steel, aluminum, concrete, and wood
- 3. Shear test on mild steel and aluminum (single and double shear tests)
- 4. Torsion test on mild steel and cast-iron solid bars and pipes
- 5. Flexure test on timber and cast-iron beams
- 6. Deflection test on mild steel and wooden beam specimens
- 7. Graphical solution method for principal stress problems
- 8. Impact test on mild steel, brass, aluminum, and cast-iron specimens
- 9. Experiments on thermal stresses
- 10. Strain measurement in stress analysis by photo-elasticity
- 11. Strain measurement involving strain gauges/ rosettes
- 12. Assignment involving computer programming for simple problems of stress, strain Computations.