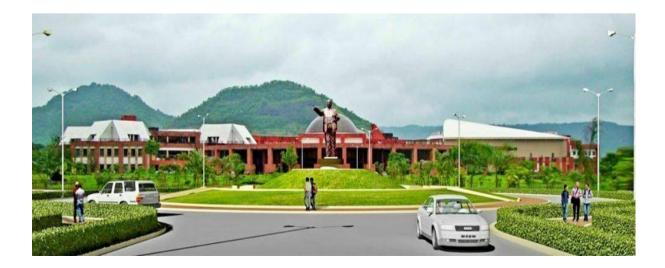
Dr. Babasaheb Ambedkar Technological University (Established as University of Technology in the State of Maharashtra) (Under Maharashtra Act No. XXIX of 2014) P.O. Lonere, Dist. Raigad, Pin 402 103, Maharashtra Telephone and Fax. 02140 - 275142 www.dbatu.ac.in



CURRICULUM UNDER GRADUATE PROGRAMME

B.TECH.

Final Year MECHANICAL ENGINEERING/MECHANICAL

ENGINEERING(SANDWICH) ACADEMIC YEAR2023-2024

Abbreviations

BSC: Basic Science Course ESC: Engineering Science Course PCC: Professional Core Course PEC: Professional Elective Course OEC: Open Elective Course HSSMC: Humanities and Social Science including Management Courses

PROJ: Project work, seminar and internship in industry or elsewhere

Course Structure for Semester VII B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) (2023-24)

Semester V	II									
Course Category	Course Code	Course Title	Teaching Scheme			Evaluation Scheme				No. of Credits
			L	Т	Р	CA	MSE	ESE	Total	
PCC15	BTMC701	Mechatronics	3	-	-	20	20	60	100	3
HSSMC4	BTHM702	Industrial Engineering and Management	3	-	-	20	20	60	100	3
PEC5	BTMPE703A-G BTPPE703D	Elective-V	3	-	-	20	20	60	100	3
OEC3	BTMOE704A-C	Open Elective-III	3	-	-	20	20	60	100	3
OEC4	BTMOE705A-C	Open Elective-IV	3	-	-	20	20	60	100	3
PCC16	BTMCL706	Mechanical Engineering Lab	-	-	<mark>4</mark>	60	-	40	100	2
PROJ-6	BTMP 707	Mini Project			6	<mark>30</mark>		<mark>20</mark>	<mark>50</mark>	<mark>3</mark>
PROJ-7	BTMI60 <mark>9</mark>	IT – 3 Evaluation	-	-	-	-	-	100	100	1
		Total	15	-	10	<mark>190</mark>	100	<mark>460</mark>	<mark>750</mark>	21

BSC = Basic Science Course, ESC = Engineering Science Course, PCC = Professional Core Course PEC = Professional Elective Course, OEC = Open Elective Course, LC = Laboratory Course HSSMC = Humanities and Social Science including Management Courses

Elective V:

Sr. No	Course code	Course Name
1		Design of Air Constitution Constants
1	BTMPE703A	Design of Air Conditioning Systems
2	BTMPE703B	Biomechanics
3	BTMPE703C	Non-conventional Machining
4	BTMPE703D	Advanced IC Engines
5	BTMPE703E	Additive Manufacturing
6 BTMPE703F		Surface Engineering
/	BIPPE/03D	Processing of Polymers
8	BTMPE703G	Stress Analysis

Open Elective III:

Sr. No	Course code	Course Name
1	BTMOE704A	Sustainable Development
2	BTMOE704B	Entrepreneurship Development
3	BTMOE704C	Plant Maintenance

Open Elective IV:

Sr.No	Course code	Course Name
1	BTMOE705A	Engineering Economics
2	BTMOE705B	Biology for Engineers
3	BTMOE705C	Intellectual Property Rights

Course Structure for Semester VIII

B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (Sandwich) 2023-24

Course	Course Code	Course Title	Teaching Scheme			Evaluation Scheme				Credit
Category			L	Т	Р	CA	MSE	ESE	Total	
		Choose any two subjects from ANNEXURE-A#				20	20	60	100	3
		- ANNEAUKE-A#				20	20	60	100	3
PROJ-8	BTMP801/	Project								
	BTMI801	OR	-	-	<mark>16</mark>	60	-	40	100	<mark>08</mark>
		Internship								
		Total	-	-	<mark>16</mark>	100	40	160	300	<mark>14</mark>

ANNEXURE-A# (Provisional)

Recommendations of 8th Semester Courses in Self-study Mode from NPTEL/ SWYAM Platform, THE LIST MAY ALTER AND MODIFY AS PER THE AVAILABILITY OF THE SUBJECTS ON THE NPTEL/ SWYAM Platform AND USEFULNESS, EVERY YEAR

				,	
Sr No	Course Code	Course Name	Duration (Weeks)	Institute Offering Course	Name of Professor
1	BTMEC801A	Fundamentals of Automotive Systems	12 Weeks	IITM	Prof. C. S. Shankar Ram
2	BTMEC801B	Mechanics of Fiber Reinforced Polymer Composite Structures	12 Weeks	IITG	Prof. Debabrata Chakraborty
3	BTMEC801C	Explosions and Safety	12 Weeks	IITM	Prof. K. Ramamurthi
4	BTMEC801D	Material Characterization	12 Weeks	IITM	Prof. Sankaran.S
5	BTMEC801E	Dealing with materials data : collection, analysis and interpretation	12 Weeks	IISc	Prof. M P Gururajan
6	BTMEC801F	Non-Conventional Energy Resources	12 Weeks	IITM	Prof. Prathap Haridoss

Six months of Internship in the industry

These subjects are to be studied on self –study mode using SWAYAM/NPTEL/Any other source

Student doing project in Industry will give NPTEL Examination/Examination conducted by the University i.e. CA/MSE/ESE # Students doing project in the Institute will have to appear for CA/MSE/ESE

Total Credits: 161 (Batch 20-24)

Semester - VII

Mechatronics							
BTMC701	PCC15	Mechatronics	3-0-0	3 Credits			
Teaching Schem	ne:	Examination Scheme	e:				
Lecture: 3 hrs/we	eek	Continuous Assessme	Continuous Assessment: 20 Marks				
Tutorial: 0 hr/we	ek	Mid Semester Exam:	Mid Semester Exam: 20 Marks				
		End Semester Exam:	End Semester Exam: 60 Marks (Duration 03 hrs)				

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Define sensor, transducer and understand the applications of different sensors and transducers
CO2	Explain the signal conditioning and data representation techniques
CO3	Design pneumatic and hydraulic circuits for a given application
CO4	Write a PLC program using Ladder logic for a given application
CO5	Understand applications of microprocessor and micro controller
CO6	Analyse PI, PD and PID controllers for a given application

Mapping of course outcomes with program outcomes

Course					F	rogran	n Outc	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	3	2				2	1		1
CO2	3	2			3	3	2				1	3
CO3	1	1		3	3	2	1		3		1	3
CO4	3	3	1	1	3		1	1	1			
CO5	3			1	3	2	3					2
CO6		3	3		3	3	1	1	3			2

Industrial Engineering and Management

BTHM702	HSSMC4	Industrial Engineering and Management	3-0-0	3 Credits
---------	--------	--	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Tutorial: 0 hr/week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

CO1	Impart fundamental knowledge and skill sets required in the Industrial Management and Engineering profession, which include the ability to apply basic knowledge ofmathematics, probability and statistics, and the domain knowledge of IndustrialManagement and Engineering
CO2	Produce ability to adopt a system approach to design, develop, implement and innovate

	integrated systems that include people, materials, information, equipment and energy.							
CO3	Understand the interactions between engineering, businesses, technological and							
COS	environmental spheres in the modern society.							
CO4	Understand their role as engineers and their impact to society at the national and global							
C04	context.							

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1											2	1
CO2									2	2	2	
CO3								2				
CO4								2				2

Elective V

Design of Air-Conditioning Systems

BTMPE703A PEC5	Design of Air-Conditioning Systems	3-0-0	3 Credits
----------------	------------------------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Basic Air conditioning

Course Outcomes: At the end of the course, students will be able to:

CO1	Understand the cooling load calculation
CO2	Explain concept of ventilation and its implementation
CO3	Learn duct design applied to real life situation
CO4	Learn and differentiate the various modern air conditioning systems/units

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2		2	1	1	1			1	
CO2	3	3				1	2					
CO3	3	3	3	2	2	1	1	1			2	
CO4		1	1	1		1	1	1				

Biomechanics

BTMPE703B	PEC 5	Biomechanics	3-0-0	3 Credits
Teaching Schem	ne:	Examination Scheme:		

Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

CO1	Explain various forces and mechanisms and define Newton's law of motion, work and
001	energy, moment of inertia
CO2	Describe forces and stresses in different human joints
CO3	Discuss bio fluid mechanics in cardiovascular and respiratory system in human body
CO4	Differentiate between hard tissues and soft tissues
CO5	Understand concepts of implants and Identify different techniques used in biomechanics
005	implants

Course						ogram						
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1			1	1	1	1		1	1
CO2	2	2	2			1	2		1		1	1
CO3	2	2	2			1	1	1	1			1
CO4	1	1	1				1	1	1			1
CO5	1	1	2				1	1			1	1

Mapping of course outcomes with program outcomes

Non-conventional Machining

BTMPE703C	PEC5	Non-conv	ventional Machini	ing	3-0-0	3Credits		
Teaching Scheme:			Examination Scheme:					
T 01 /				2016 1				

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks Mid Semester Exam: 20 Marks

End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: Manufacturing Processes

Course Outcomes: At the end of the course, students will be able to:

CO1	Classify Non-conventional machining processes.				
CO2	Understand working principle and mechanism of material removal in various non- conventional machining processes.				
CO3	Identify process parameters their effect and applications of different processes.				
CO4	Summarized merits and demerits of non-conventional machining processes.				
CO5	Explain the mechanism to design hybrid processes such as ELID grinding, EDCG, EDCM,				
	etc.				
CO6 Understand mechanism and working principle of micro machining using non-conve					
000	processes.				

Mapping of course outcomes with program outcomes

Course					F	Program	n Outc	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	1	1	1				1		1
CO2	2	2	1		2	1	1			1		1
CO3	2	2	1	1	2	1	1			1		1
CO4	2	2	1		2	1	1			1		1
CO5	3	2	1	1	2	2	1			1		1
CO6	2	2	1	1	1	2	1			1		1

Advanced IC Engines

BTMPE703D	PEC 5	Advanced IC Engines	3-0-0	3 Credits
-----------	-------	---------------------	-------	-----------

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: IC Engines

CO1	Define and Distinguish between Spark ignition and Compression ignition system. Describe Air- fuel supply systems in ic engines.
CO2	Identify and Demonstrate normal and abnormal combustion in combustion chambers of IC engines. According to which able to analyse and Design combustion chambers.
CO3	Recognize and discuss engine emissions formation, effects and various methods to reduce emissions and their measuring equipment's.
CO4	Understand combustion and emission characteristics of an alternative energy sources and suggest appropriate applications of alternative fuels such as bio diesels, natural gas, LPG, hydrogen, etc. and their Engine modifications for using these fuels.

CO5 Apply and interpret with the recent trends IC engine techniques such as HCCI, CRDI, GDI, etc. with latest measuring equipments.

Course					F	Program	n Outc	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2		1		1							
CO2		2	3									
CO3		1				2	2					
CO4		1		2	1		1					
CO5					2	2	1					

Mapping of course outcomes with program outcomes

Additive Manufacturing

BTMPE703E	PEC5	Additive Manufacturing	3-0-0	3Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes:At the end of the course, students will be able to:

CO1	Understand the importance of Additive Manufacturing
CO2	Classify the different AM processes
CO3	Design for AM processes
CO4	Understand the applications of AM
CO5	Differentiate the post processing processes

Mapping of course outcomes with program outcomes

Course					I	Progra	m Out	comes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	2	2	2	2					1
CO2	2	2	3	3	3	3	1					1
CO3	2	2	3	3	3		2					1
CO4	3	3	3	2	2	2	2					1
CO5	2	3	3	2	2	2	2					1

Surface Engineering

BTMPE703F	PEC5	Surface Engineering	3-0-0	3Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to

CO1	Learn the importance and need of surface engineering
CO2	Describe various surface cleaning and modification techniques
CO3	Understand the concepts of surface integrity
CO4	Compare various surface coating technologies
CO5	Select appropriate method of coating for a given application
CO6	Apply measurement techniques and carry out characterization of coated surfaces.

Mapping of course outcomes with program outcomes

Course					Pı	ogram	Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	2		1							1		1
CO2	2				2							
CO3	2	2	1	2						1		
CO4	2				1	1		1		1		
CO5	2	2	1		1		1	1	1	1	1	
CO6	2	2	1	2	2			1	1	1		

Processing of Polymers

BTPPE703D	PEC5	Processing of Polymers 3-0-0 3Cro					
Teaching Schem	e:	Examination Scheme:					
Lecture: 3 hrs/week Continuous Assessment: 20 Marks							
		Mid Semester Exam: 20	Mid Semester Exam: 20 Marks				
		End Semester Exam: 60 Marks (Duration 03 hrs					

Stress Analysis

BTMPE703G	PEC5	Stress Analysis	3-0-0	3 Credits

Teaching Scheme:	Evaluation Scheme:

Dr. Babasaheb Ambedkar Technological University, Lonere				
Lecture: 3 hrs/ week	Continuous Assessment: 20 Marks			
	Mid Semester Exam: 20 Marks			
	End Semester Exam: 60 Marks (Duration 03			
	hours)			

Pre-Requisites: Strength of Materials, Machine Design-I

CO1	Explain the concept of stress, strain & their relationships & will also be able to choose suitable coordinate system for problems of stress analysis.
CO2	Explain the concept of Plane stress, plane strain, Stress & Strain at a point & will be able to derive the differential equation of equilibrium, Compatibility equation.
CO3	Apply the concept of stress function to solve the stress analysis problems involving simple

	components in Cartesian & Polar coordinate systems.
	Explain basic principles of optics, describe polariscope & explain the effect of stressed
CO4	model on behaviour of light vector in polariscope, compensation technique, separation
	techniques & Stress Freezing in photoelasticity
	Describe various types of strain gage. Will be also able to describe & apply the theory of
CO5	Wheatstone bridge for strain measurement using strain gages & to explain the technique
	for measurement of strain & stresses in rotary components.
CO6	Describe other techniques like Grid technique & Brittle coating method

Mapping of Course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										1
CO2	2	2										1
CO3	2	3	3	2								1
CO4	2	1										1
CO5	1	2	1	1								1
CO6	1	2										1

Open Elective-III

Sustainable Development

BTMOE704A	OEC2	Constal in state Descale in the	200	2 Condita
BTMOE704A	OEC3	Sustainable Development	3-0-0	3 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes:At the end of the course, students will be able to:

CO1	Explain the difference between development and sustainable development
CO2	Explain challenges of sustainable development and climate change
CO3	Explain sustainable development indicators
CO4	Analyze sustainable energy options
CO5	Understand social and economic aspects of sustainable development

Mapping of course outcomes with program outcomes

Course		Program Outcomes												
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	2	3		2	3	3	3	2	2		2		
CO2	1	1	3	1	2	3	3	3	2	2		2		
CO3	2	1	1				3	2		1		2		
CO4	3	3			2	3	3	2				1		

Dr. Babasaheb Ambedkar Technological University, Lonere												
CO5			3			2	3	2				1

Entrepreneurship Development

BTMOE704B	OEC 4	Entrepreneurship Development	3-0-0	3 Credits
Teaching Scheme:		Examination Scheme:		

Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
Lecture. 5 ms/ week	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	enlarge the supply of entrepreneurs for rapid industrial development
CO2	Develop small and medium enterprises sector which is necessary for generation of employment
CO3	Industrialize rural and backward regions
	Provide gainful self-employment to educated young men and women
CO5	Diversify the sources of entrepreneurship.

Mapping of course outcomes with program outcomes

Course		Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1									2				
CO2									2				
CO3											2		
CO4											2	3	
CO5												3	

Plant Maintenance

BTMOE704C	OEC3	Plant M	aintenance	3-0-0	3Credits					
Teaching Scheme	Feaching Scheme: Examination Scheme:									
Lecture: 3 hrs/weel	k	Mid	Continuous Assessment: 20 Marks Mid Semester Exam: 20 Marks End Semester Exam: 60 Marks (Duration 03 hrs)							

Objectives: To exemplify different types of plants and its function and analyse the principles used in plants maintenance. To understand various basic aspects related to running of industry the safety methods in plants. This course provides problems based techniques related with location, layout, maintenance, replacement of machines, etc.

Pre-Requisites: None

Course Outcomes: At the end of the course, students will be able to:

CO1	Recognize and enlist probable failures in mechanical elements.
CO2	Dismantle, assemble and align mechanisms in sequential order for given assembly.
CO3	Compare maintenance practices like on-line, shut down, corrosion, productive and preventive maintenance.
CO4	Analyze economics of plants and list factors affecting the maintenance of a plant.
CO5	Correlate the linkages between different maintenance aspects and how they impact on overall maintenance effectiveness.
CO6	Analyze different maintenance techniques and select an appropriate technique for a particular plant.

Mapping of course outcomes with program outcomes:

Course Outcomes		Program Outcomes													
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1		2	2		1	2	1	1	2			2			
CO2	2			1	1	2	2					2			
CO3	2	2	1	1	1		1	1	1						
CO4	1	1		2	1	2	1		2		1	2			
CO5	2	2			1	2	2				1	2			
CO6	1					1					1	1			

Open Elective-IV Engineering Economics

BTMOE705A	OEC4	Engineering Economics3-0-03							
Teaching Scheme:Examination Scheme:									
Lecture: 3 hrs/we	ek	Contin	uous Assessment	: 20 Marks					
		Mid Se	emester Exam: 20) Marks					
End Semester Exam: 60 Marks (Duration 03 hrs)									

Pre-Requisites: None

CO1	Apply the appropriate engineering economics analysis method(s) for problem solving: present worth, annual cost, rate-of-return, payback, break-even, Benefit-cost ratio.									
CO2	Evaluate the cost effectiveness of individual engineering projects using the methods learned and draw inferences for the investment decisions.									
CO3	Compare the life cycle cost of multiple projects using the methods learned, and make a quantitative decision between alternate facilities and/or systems.									
CO4	Compute the depreciation of an asset using standard Depreciation techniques to assess its impact on present or future value.									
CO5	Apply all mathematical approach models covered in solving engineering economics problems: mathematical formulas, interest factors from tables, Excel functions and graphs. Estimate reasonableness of the results.									
CO6	Examine and evaluate probabilistic risk assessment methods.									
CO7	Compare the differences in economic analysis between the private and public sectors. Recognize the limits of mathematical models for factors hard to quantify.									
CO8	Develop and demonstrate teamwork, project management, and professional communications skills									

Mapping of course outcomes with program outcomes

Course		Program Outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1											3			
CO2											3			
CO3											3			
CO4											3			
CO5					3						3			
CO6											3			
CO7											3			
CO8									2		3			

Biology for Engineers

BTMOE705B	OEC 4	Biology for Engineers	3-0-0	3 Credits

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

CO1	Explain origin of life and Evolution, Cells, Biomolecules-Lipids			
CO2	Understand Biomolecules			
CO3	Understand Cell structure and function and cell cycle			
CO4	Explain Mendelian genetics			
CO5	Understand and Explain DNA structure, DNA replication, Transcription, Translation			

Course					Р	rogram	Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3		1		1			1		1
CO2	1	2	3		1		1			1		1
CO3	1	2	3		1		1			1		1
CO4	1	2	3		1		1			1		1
CO5	1	2	3		1		1			1		1

Mapping of course outcomes with program outcomes

Intellectual Property Rights

ſ	BTMOE705C	OEC4	Intellectual Property Rights	3-0-0	3 Credits
			1 0		

Teaching Scheme:	Examination Scheme:
Lecture: 3 hrs/week	Continuous Assessment: 20 Marks
	Mid Semester Exam: 20 Marks
	End Semester Exam: 60 Marks (Duration 03 hrs)

Pre-Requisites: None

CO1	State the basic fundamental terms such as copyrights, Patents, Trademarks etc.,
CO2	Interpret Laws of copy-rights, Patents, Trademarks and various IP registration Processes.
CO3	Exhibit the enhance capability to do economic analysis of IP rights, technology and innovation related policy issues and firms commercial strategies.
CO4	Create awareness at all levels (research and innovation) to develop patentable technologies.
CO5	Apply trade mark law, copy right law, patent law and also carry out intellectual property audits.
CO6	Manage and safeguard the intellectual property and protect it against unauthorized use.

Course					F	rogran	n Outc	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1											
CO2								1				
CO3		1						1				
CO4										1		
CO5	1							1				
CO6								2				

Mapping of course outcomes with program outcomes

Mechanical Engineering Lab –V

BTMCL706	PCC16		0-0-4	2 Credit
----------	-------	--	-------	----------

Practical Scheme:	Examination Scheme:
Practical: 4 hrs/batch	Continuous Assessment: 60 Marks
	End Semester Exam: 40 Marks

Group A (Mechatronics Lab)

List of Practical's/Experiments/Assignments (Any SIX)

- 1. Study and demonstration of various types of sensors
- 2. Speed control of various types of Electrical Motors
- 3. MinimumtwocircuitsonPneumaticstobedevelopedonPneumatictrainerkit
- 4. Minimum two circuits on Electro-Pneumatics to be developed on Electro- Pneumatic trainer kit
- 5. Minimum two circuits on Hydraulics and Electro-hydraulics to be developed on Hydraulic trainer kit
- 6. Programming of Microprocessor and Microcontroller
- 7. Programming on PLC
- 8. Demonstration of Process control such as temperature, level, flow, etc. control using PID controller

Group B

Perform any THREE Practical's/ Assignments on Elective – V

SEMESTER VII Mini Project

BTMP707	Mini Project	PROJ-6	0L-0T-6P	3 Credits
---------	--------------	--------	----------	-----------

Teaching Scheme:	Examination Scheme:
Practical: 6 hrs/week	Continuous Assessment: 30 Marks
	Mid Semester Exam:
	End Semester Exam: 20 Marks

IT – 3

BTMI608	IT – 3 Evaluation	PROJ-7	0L-0T-0P	1 Credits
(IT – 3)				

Teaching Scheme:	Examination Scheme:
Practical: hrs/week	Continuous Assessment:
	Mid Semester Exam:
	End Semester Exam: 100 Marks

SEMESTER VIII Project /Internship

BTMP801/	Project / Internship	PROJ-8	0L-0T-16P	8 Credits
BTMI801				

Teaching Scheme:	Examination Scheme:
Practical: 16 hrs/week	Continuous Assessment: 60 Marks Mid Semester Exam: End Semester Exam: 40 Marks

 BTMP707 Mini Project and BTMP801/ BTMI801 Project /Internship are independent and allotment will also be done independently in respective semester.

• BTMP707 Mini Project will be done in-house only.

• Evaluation of both will be done independently as per the time schedule in AC.

 In case student(s) choose in-house project, it may be an extension of the Mini Project, however, Mini Project should be completed in all respect in semester VII itself.