
Dr. Babasaheb Ambedkar Technological University

(Established as a University of Technology in the State of Maharashtra) (under Maharashtra Act No. XXIX of 2014) P.O.: Lonere, Dist.: Raigad, Pin 402 103, Maharashtra. Telephone and Fax. : 02140 - 275142 www.dbatu.ac.in

Course Structure and Contents for M.Tech. in Mechanical Engineering (For Affiliated Institutes Only)

Syllabus as per the guidelines of National Education Policy 2020 To be implemented from Academic Year 2024-25.

Vision

The vision of the Department is to achieve excellence in teaching, learning, research and transfer of technology and overall development of students.

Mission

Imparting quality education, looking after holistic development of students and conducting need based research and extension activities.

M.Tech. in Electric Vehicle Technology

Program Educational Objectives are broad statements that describe the career and professional accomplishments that the Electrical Vehicle Technology program is preparing graduates to achieve.

Programme Educational Objectives (PEOs)

No.	PEO					
PEO1	To emerge as competent professionals and leaders in Electrical Vehicle					
	Technology, contributing to global enterprises while upholding a strong					
	background in ethics and societal responsibilities.					
PEO2	To possess the ability to independently conduct research, investigation, and					
	development work in Electrical Vehicle Technology, actively contributing to					
	advancements in the field.					
PEO3	To demonstrate a high level of competence in addressing diverse and complex					
	challenges within the domain of Electrical Vehicle Technology, and apply					
	contemporary engineering tools and procedures for sustainable development,					
	while promoting a culture of self-learning and ethical practice in their					
	professional endeavours.					
PEO4	To enable post graduates to carry out innovative and independent research work,					
	disseminate the knowledge in Academia/Industry/Research Organizations to					
	develop systems and processes in the related field.					

Programme Outcomes (POs)

At the end of the program, the students will be able to:

No.	PO				
PO1	Engineering knowledge: Apply the knowledge of mathematics, science,				
	engineering fundamentals, and an engineering specialization to the solution of				
	complex engineering problems.				
PO2	Problem analysis: Identify, formulate, review research literature, and analyze				
	complex engineering problems reaching substantiated conclusions using first				
	principles of mathematics, natural sciences, and engineering sciences.				
PO3	Design/development of solutions: Design solutions for complex engineering				
	problems and design system components or processes that meet the specified				
	needs with appropriate consideration for the public health and safety, and the				
	cultural, societal, and environmental considerations.				

PO4	Conduct investigations of complex problems: User research-based knowledge						
	and research methods including design of experiments, analysis and						
	interpretation of data, and synthesis of the information to provide valid						
	conclusions.						
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources,						
	and modern engineering and IT tools including prediction and modeling to						
	complex engineering activities with an understanding of the limitations.						
PO6	The engineer and society: Apply reasoning informed by the contextual						
	knowledge to assess societal, health, safety, legal and cultural issues and the						
	consequent responsibilities relevant to the professional engineering practice.						
PO7	Environment and sustainability: Understand the impact of the professional						
	engineering solutions in societal and environmental contexts, and demonstrate						
	the knowledge of, and need for sustainable development.						
PO8	Ethics: Apply ethical principles and commit to professional ethics and						
	responsibilities and norms of the engineering practice.						
PO9	Individual and teamwork: Function effectively as an individual, and as a						
	member or leader in diverse teams, and in multidisciplinary settings.						
PO10	Communication: Communicate effectively on complex engineering activities						
	with the engineering community and with society at large, such as, being able to						
	comprehend and write effective reports and design documentation, make						
	effective presentations, and give and receive clear instructions.						
PO11	Project management and finance: Demonstrate knowledge and understanding						
	of the engineering and management principles and apply these to one"s own						
	work, as a member and leader in a team, to manage projects and in						
	multidisciplinary.						
PO12	Life-long learning: Recognize the need for, and have the preparation and						
	ability to engage in independent and life-long learning in the broadest context of						
	technological change.						

Department PSO's

PSO-1: Engineering graduates can explore knowledge of electrical & electronics engineering in core as well as multidisciplinary areas in innovative, dynamic and challenging environment, for the research based teamwork.

PSO-2: Engineering graduates can provide hands on experience in the fields of Non-conventional and Renewable Energies.

	Course Code	Course Title	L	Т	Р	Credits	Categorization
SEM- I	12612PC101	Advanced Thermodynamics	3	1	-	4	PCC
	12612PC102	Machining and Forming Processes	3	1	-	4	PCC
	12612PC103	Mechanical Vibrations	3	1	-	4	PCC
	12612PE104	Program Elective-I	3	-	-	3	PEC
	12612PE105	Program Elective-II	3	-	-	3	PEC
	12612SE107	Seminar	-	-	2	1	ELC
	12612AU108	Stress Management	-	-	2	-	Audit Course
		Total	15	3	04	19	
SEM- II	12612PC201	Advanced Fluid Mechanics	3	1	-	4	PCC
		and Heat Transfer					
	12612PC202	Mechanical Design Analysis	3	1	-	4	PCC
	12612PE203	Program Elective-III	3	-	-	3	PEC
	12612OE204	Open Elective I	3	-	-	3	OE
		Research Methodology	3			3	MLC
	12612PC205	PG Lab	-	-	4	2	PCC
	L						
	12612MP206	Mini-Project	-	-	2	1	ELC
	12612AE207	IKS Bucket	2	-	-	2	AEC/VEC/IKS
	12612AU208	Disaster Management	-	-	2	-	Audit Course
		Total	15	2	08	22	

(Effective from AY 2024-25)

Abbreviations: PCC (Programme Core Course), PEC (Programme Elective Course), ELC (Experiential Learning Courses), OE (Open Elective), AEC (Ability Enhancement Courses), VEC (Value Education Courses), IKS (Indian Knowledge System), MD M (Multidisciplinary Minor).

	Program Elective -I
A)	Advanced Machine Design
B)	Utilization of Solar Energy
C)	Advanced I.C. Engines

	Program Elective -II			
A)	Manufacturing Planning and Control			
B)	Hydraulic, Pneumatic and Fluidic Control			
C)	Wind Energy			
D)	Finite Element Method			

	Program Elective -III
A)	Numerical Methods and Computational Techniques
B)	CAD- CAE
C)	Computational Fluid Dynamics
D)	Advanced Refrigeration
E)	Design of Heat Exchangers
F)	Alternative Fuels for I.C. Engines

	Open Elective I
A)	New Labor Codes of India
B)	Urban Utilities Planning: Water Supply, Sanitation and Drainage
C)	Environment and Development
D)	Entrepreneurship
E)	Research Methodology

	Open Elective II
A)	Student Psychology
B)	Business To Business Marketing (B2B)
C)	Organizational Behavior
D)	Principles Of Economics
E)	Intellectual Property & Rights
F)	Introduction to Public Administration

	Multidisciplinary Minor
A)	Design Of Mechatronic Systems
B)	Ethical Hacking
C)	Sustainable Power Generation Systems
D)	Components And Applications of Internet of Things
E)	Linear Algebra
F)	Artificial Intelligence and Machine Learning

IKS Bucket

	Indian Knowledge System (IKS)			
A)	Indian Knowledge System (IKS): Concepts and Applications			
	in Engineering			
B)	Indian Knowledge System (IKS): Humanities and Social			
	Sciences			

12612PC101	12612PC101 ADVANCED THERMODYNAMICS			PCC	L-T-P-C: 3-1-0-4			
Exam Scheme								
Mid-Sem Test		Continuous Assessment	End-Sem Exam		Total			
20 Marks		20 Marks	60 Marks		100 Marks			

Pre-Requisites: Thermodynamics

Course Objectives

- The course is intended to Provide analytical methods for the determination of the direction of processes from the first and second laws of thermodynamics and to Introduce methods in using equations of potentials, availability, and exergy for thermodynamic analysis.
- Gain the knowledge on non-reactive mixture properties, Psychometric Mixture properties and psychrometric chart and Air conditioning processes.
- Develop the ability of analyzing vapor and Gas power cycles.
- Provide in-depth knowledge of Direct Energy Conversion of Fuel Cells, Thermoelectric energy, Thermionic power generation, Thermodynamic devices Magneto Hydrodynamic Generations and Photovoltaic cells.
- Develop communication and teamwork skills in the collaborative course project.

Course Outcomes

At the end of the course, the student will be able to:

CO1: Explain basic thermodynamic concepts and laws.

CO2: Describe the concepts entropy and exergy and their use in analyses of thermal energy systems.

CO3: Analyze power plants, refrigeration plants and thermal/chemical installations.

CO4: Evaluate means for minimizing energy losses in selected processes.

CO5: Use advanced thermodynamics on a research case.

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	2	1		2		1						
CO2	2	1										
CO3	1	2		1						1		
CO4	2	2	1	1		2						
CO5												

12612PC102	MACHINING AND F	ORMING PROCESSES	PCC	L-T-P-C: 3-1-0-4					
	Exam Scheme								
Mid-Sem Tes	Continuous A	Assessment End-Se	m Exam	Total					
20 Marks	20 Ma	urks 60 N	/larks	100 Marks					

Course Outcomes

At the end of the course, the student will be able to:

CO1: Understand the machining theory and cutting forces in machining

CO2: Explain the advanced forming processes and effect of parameters like strain rate, working temperature and composition on forming processes

CO3: Understand the mechanics of grinding and grinding economics

CO4: Explain different advanced machining and forming processes

CO5: Develop the manual part programming and generate tool paths for a given profile

12612PC103	MECHANICAL VIBRATIONS	PCC	L-T-P-C: 3-1-0-4					
Exam Scheme								
Mid-Sem Test	Continuous Assessment	End-Sem Exam	Total					
20 Marks	20 Marks	60 Marks	100 Marks					

Pre-Requisites: Mathematics, Theory of Machines. Course

Objectives

- To introduce classical Vibration theories, relating to discrete and continuous systems with applications.
- To teach various numerical techniques including FEA for analysis of complex structures and modal testing for natural frequencies and mode shapes.
- To introduce special cases of non-linearity and random phenomena in vibrating systems including their stability.
- To provide the sufficient knowledge of Mechanical vibration measurement and its control.

Course Outcomes

At the end of the course, the student will be able to:

CO1: Derive the equation of motion by creating the mathematical model of Free and Forced vibration systems.

CO2: Apply the knowledge of numerical techniques for the analysis of Multi degree freedom system. **CO3:** Analyze the methods for solving the problems of continuous, random, and non-linear vibrations. **CO4:** Understand the vibration control and measurements methods.

00101												
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
СО												
CO1	3	3	3	2								2
CO2	3	2	3	3	1							3
CO3	1	3	3	3								2
CO4	1	1		3	3							1

CO-PO Mapping

12612PE104A	AD	VANCED MACHINE DESIGN	Program Elective-I	L-T-P-C: 3-0-0-3				
	Exam Scheme							
Mid-Sem Tes	st	Continuous Assessment	End-Sem Exam	Total				
20 Marks		20 Marks	60 Marks	100 Marks				

Course Outcomes

At the end of the course, the student will be able to:

CO1: To analyze variance, factorial design and regression and understand reliability theory, design and analysis of reliability.

CO2: Students will have the ability to analyze behavior of mechanical elements under fatigue and creep

CO3: To study optimization and its methods.

CO4: To study composite materials and its characteristics.

CO5: To design mechanical components for various materials and process.

СО-РО М	apping											
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	1		1			1						2
CO2	1											3
CO3	1		1			1						2
CO4		1			1							1
CO5	1		1			2						

12612PE104B	UTILIZ	ATION OF SOLAR ENERGY	Program Elective-I	L-T-P-C: 3-0-0-3						
	Exam Scheme									
Mid-Sem	Test	Continuous Assessment	End-Sem Exam	Total						
20 Marks		20 Marks	60 Marks	100 Marks						

Course Outcomes

At the end of the course, the student will be able to:

CO1: Acquire knowledge on solar radiation principles with respect to solar energy estimation.

CO2: Get familiarized with various collecting techniques of solar energy and its storage.

CO3: Learn the solar photovoltaic technology principles and different types of solar cells for energy conversion and different photovoltaic applications.

CO4: Understand the working principles of several solar appliances like Solar cookers, Solar hot water systems, Solar dryers, Solar Distillation, Solar greenhouses.

CO5: Summarize the basic economics of the solar energy collection system.

12612PE104C	ADVANCED I. C. ENGIN	ES Program Elective-I	L-T-P-C: 3-0-0-3						
	Exam Scheme								
Mid-Sem Tes	Continuous Assessme	nt End-Sem Exam	Total						
20 Marks	20 Marks	60 Marks	100 Marks						

Course Outcomes

At the end of the course, the student will be able to:

CO1: Describe and compare different types, Constructional details, Cycles of operation and operative systems of I. C. Engines.

CO2: Compare the Design, Performance and Fuel quality Factors affecting to avoid the detonation/ knocking in SI and CI engines.

CO3: Evaluate the Performance Parameters of I.C. Engines and analyze the Performance maps.

CO4: Understand the importance of BHARAT STAGE Emission Norms and technologies associated for meeting the same.

CO5: Understand the research trend in alternative fuels, Fuel cell, Hybrid and Electric vehicles and analyze engine heat transfer.

CO DO N	
CO-PO N	<i>l</i> apping

	11 0											
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
СО												
CO1	1	2										
CO2			1	1		1		2				
CO3				1	1		1	2				
CO4												
CO5												

Research Methodology

	Rese	earch Methodology	MLC	3-0-0	3 Credits		
Examination Schedule							
Mid-Sem I	Examination 20	Continuous Assessment 20	End-Sem l	Exam 60	Total 100		
Marks		Marks	Mar	Marks			

Course Outcomes: At the end of the course, students will be able to

CO1	Explain the need and significance of research
CO2	Explain the need for the research design
CO3	Explain the role of hypothesis testing in research work
CO4	Explain the significance of data collection
CO5	Explain the need of interpretation

12612PE105A	MANUFACTURING PLANNING AN CONTROL	D Program Elective-II	L-T-P-C: 3-0-0-3					
	Exam Scheme							
Mid-Sem Test 20 Marks	Continuous Assessment 20 Marks	End-Sem Exam 60 Marks	Total 100 Marks					

Course Outcomes

At the end of the course, the student will be able to:

CO1: Apply the systems concept for the design of production and service systems.

CO2: Make forecasts in the manufacturing and service sectors using selected quantitative and qualitative techniques.

CO3: Apply the principles and techniques for planning and control of the production and service systems to optimize/make best use of resources.

CO4: Understand the importance and function of inventory and to be able to apply selected techniques for its control and management under dependent and independent demand circumstances.

CO5: Understand the lot sizing and production scheduling

CO6: Study about quality planning, cost planning and control.

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	1	2										
CO2			1	1		1		2				
CO3				1	1		1	2				
CO4												
CO5												

12612PE105B	HYDRAULIC, PNEUMATIC AND FLUIDIC CONTROL	Program Elective-II	L-T-P-C: 3-0-0-3				
	Exam Scheme						
Mid-Sem Test	Continuous Assessment	End-Sem Exam	Total				
20 Marks	20 Marks	60 Marks	100 Marks				

Course Outcomes: At the end of the course, the student will be able to:

- CO1 Understand the type of control system and their utility
- CO2 Describe the hydraulic power generation.
- CO3 Design pneumatic and hydraulic circuits for a given application
- CO4 Discuss steady state operating forces, transient forces and valve instability
- CO5 Design of pure fluid digital elements, Lumped and distributed parameter fluid systems

Mapping of course outcomes with program outcomes

POs→	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs↓												
CO1	2											
CO2	2											
CO3	2	2		3	1	1						
CO4	2				3	2	3			2		1
CO5	2	2		2	3							

12612PE105C	WIND ENERGY	Program Elective-II	L-T-P-C: 3-0-0-3				
Exam Scheme							
Mid-Sem Test	Continuous Assessment	End-Sem Exam	Total				
20 Marks	20 Marks	60 Marks	100 Marks				

Course Objectives: Objectives of this course are

- To understand the history of wind energy and its scope in future.
- To get practical knowledge about use various wind energy measurement indicators, anemometers
- To calculate various parameters of a wind turbine.
- To Understand Latest Technologies in wind energy
- To Understand Growth Offshore wind energy technologies

Course Outcomes: At the end of the course, student should be able to

CO1	Identify and describe history of wind energy and its scope in future.
CO2	survey and analyze through a literature review world distribution of wind, Weibull
	statistic, variation in wind energy etc.,
CO3	Conduct an experiment to use various wind energy measurement indicators, anemometers, and
	apply it to analyze and check data obtained from surveys.
CO4	Demonstrate and calculate performance parameters wind energy turbine.
CO5	Illustrate various electrical systems used in wind energy power plant.
CO6	Examine and justify economics of wind system.

Mapping of course outcomes with program outcomes

POs	PO1	PO2	PO3	PO	PO5	PO	PO	PO	Р	PO1	PO	P0
\rightarrow				4		6	7	8	0	0	11	12
COs↓									9			
CO1	1	1	1	2								
CO2	1		2		1	1					1	
CO3	2	1	1									
CO4	1			2	1	1						
CO5	1	1										
CO6	1	1			1			1				

12612PE105D	Finite Element Method	Program Elective-II	L-T-P-C: 3-0-0-3				
Exam Scheme							
Mid-Sem Test	Continuous Assessment	End-Sem Exam	Total				
20 Marks	20 Marks	60 Marks	100 Marks				

Course Outcomes: At the end of the course the student will be able to:

CO1	Understand the basics principle of FE method
CO2	Identify mathematical model for solution of common problems
CO3	Solve structural, thermal problem using FE in 1D Case
CO4	Derive element stiffness matrix by different methods
CO5	Understand the formulation for 2D and 3D case

Mapping of course outcomes with program outcomes

Course Outcomes					Р	rogram	Outcon	nes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1										
CO2	3	3	1		1							1
CO3	2	2	1	2	2				2			1
CO4	3								2			
CO5	3	2										

12612SE107	SEMINAR	SE	0-0-2	1 Credits				
	Exam Scheme							
Continuous Assessme	nt 60 End	-Sem Evalua	ation (OR) 40	Total 100				

Course Objectives:

- 1. To understand the open literature
- 2. To familiarize the students about collection of technical literature, reading and understanding
- 3. To learn the report writing and presentation

Course Outcomes: At the end of the course, students will be able to

CO1	Identify the topic for seminar from the recent areas and technologies in thermal and fluids
	engineering or related areas.
	Carry out detailed comprehensive survey of the literature related to the topic selected. Use
CO2	information available from various sources like research papers, patents, websites, discussion with
	experts on the topic etc.
CO3	Comprehend the information, organize it and write technical report. Give presentations on the
	topic to the group of students.
CO4	Identify and report latest developments and unresolved issues in the selected topic/area.
CO5	Analyze the impact of the technologies on the environment. Identify green technologies related
	to selected topic.

Mapping of course outcomes with program outcomes

$POs \rightarrow$	Р	Р	PO									
COs↓	01	O2	3	4	5	6	7	8	9	10	11	12

CO1		2	1		3	2		1		2
CO2		2	2		2		2			
CO3		1	1			2		2	1	
CO4			3	1	2		2	1		3
CO5			1	1				1		2

Course Contents:

The seminar shall consist of the preparation of the report by the candidate on the topic mutually decided by himself and the supervisor. The topic should be a problem in the field of Mechanical Engineering and should have sufficient research orientation. The recent development in the field of the chosen topic needs to be understood by the candidate. The report must be presented in front of the examiners committee and other faculty members and students of the department. The committee should be set by the PG coordinator and Head, Mechanical Engineering for evaluation of the seminar.

12612AU108		STRESS MANAGEMENT		AUDIT	L-T-P-C: 0-0-2-0
		Exam Scheme			
Mid-Sem Te	st	Continuous Assessment	End-S	Sem Exam	Audit course

Course Objectives

- Understand the physiological and psychological aspects of stress and its impact on overall well-being.
- Learn and practice specific yoga postures, breathing exercises, and relaxation techniques to alleviate stress.
- Explore the connection between mindfulness, meditation, and stress reduction, fostering mental clarity.
- Discover holistic practices that promote better sleep, nutrition, and overall lifestyle habits for stress management.
- Develop practical skills to manage stress in daily life, enhancing resilience and promoting emotional balance.

Course Outcomes

At the end of the course, the student will be able to:

CO1: Recognize the signs and sources of stress, understanding its effects on mental and physical wellbeing.

CO2: Master a variety of yoga techniques, including postures, breathing, and meditation, to effectively manage stress

CO3: Acquire relaxation strategies that promote calmness, reduce anxiety, and enhance overall mental clarity.

CO4: Incorporate healthy habits inspired by yoga principles to foster better sleep, nutrition, and self-care routines.

CO5: Develop practical skills to navigate and cope with stress, enhancing emotional balance and promoting a more harmonious life.

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO												
CO1	2	1		2		1						
CO2	2	1										
CO3	1	2		1						1		
CO4	2	2	1	1		2						
CO5												

12612PC2	ADVANCED FLUID MEC	CHANICS	PCC	3-1-0	4 Credits				
01	AND HEAT TRANS	FER							
	Exam Scheme								
Mid-Sem Test	Continuous Assessment	End-	Sem Exam		Total				
20 Marks	20 Marks	60) Marks		100 Marks				

Course Outcomes: At the end of the course, students will be able to

CO1	Explain concepts of fluid kinematics and fluid dynamics
CO2	Explain Boundary layer theory and derive Navier Stokes equation for viscous fluid
CO3	Analyze steady state and transient heat conduction problems of real-life Thermal systems
CO4	Analyze the analytical and numerical solutions for heat transfer problem.
CO5	Analyze extended surface heat transfer problems and problems of phase change heat transfer like boiling and condensation

F F	mg or oo ar o			P0									
	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
	\rightarrow										0	1	2
	COs↓												
	CO1	3	2	1									
	CO2	2	1		3								
	CO3	3	2	1									
	CO4	3	2	1									
	CO5	3	2	1									

Mapping of course outcomes with program outcomes

12612PC202	MECHANICAL DESIGN ANALYSIS	PCC	3-1-0	4 Credits
	Exam Scheme			
Mid-Sem Test	Continuous Assessment	End-	Sem Exam	Total
20 Marks	20 Marks	60	Marks	100 Marks

Course Outcomes: At the end of the course, students will be able to

CO1	Understand theory of fatigue failure of materials under different conditions and analyze behavior
	of mechanical elements under fatigue and creep
CO2	Analyze variance, factorial design and regression and understand reliability theory, design and
	analysis of reliability.
CO3	Describe various optimization techniques and its application.
CO4	Understand various composite materials and its characteristics.
CO5	Design mechanical components for various materials and process

Mapping of course outcomes with program outcomes

F	$POs \rightarrow$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1
	COs↓										0	1	2
	CO1	1	1	2	2								
	CO2	1	1	2	2								
	CO3	1	2	1		1							
	CO4	3		1		1							
	CO5	1			2								

12612PE203 A	NUMERICAL METHODS & COMPUTATIONAL TECHNIQUES	PE-III	3-0-0	3 Credits			
Exam Scheme							
Mid-Sem	Continuous Assessment:	End-Sei	n Exam:	Total			
Test: 20	20 Marks	60 N	Iarks	100 Marks			
Marks							

Course Objectives:

- 1. To provide the students with sufficient exposure to advanced mathematical methods and tools that are relevant to engineering models.
- 2. Improving the computational skills of students by giving sufficient knowledge of numerical integration and differentiation techniques useful for solving problems arising in Mechanical Engineering.
- 3. Imparting the knowledge of real time applications of Autonomous systems, linear systems of ordinary differential equations and partial differential equations.

CO1	Students will be able to understand the Numerical integration and differentiation and solution of
	ODE.
CO2	Students will be able to analyze and develop the mathematical model of an engineering system
	using Numerical method for algebraic equation
CO3	Students will be able to solve differential equations using numerical techniques.
CO4	Students will be able to develop the mathematical model using statistical and numerical techniques

Course Outcomes: Students will be able to

Mapping of course outcomes with program outcomes

PO CO	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO12
CO1	1											
CO2	1	1	1									
CO3	1	1										
CO4	1			1								

12612PE203B	12PE203BComputer Aided Design (CAD) and Computer Aided Engineering (CAE)				3-0-0	3 Credits		
	Exam Scheme							
Mid-Sem T	est	Continuous Assessment	End	d-Sem Exam Total		tal		
20 Marks		20 Marks	60 Marks		100 Marks			

Course Outcomes: At the end of the course the student will be able to:

CO1	Know the different approaches of Design and CAD CAE in the Product Design
CO2	Understand the concepts of Wireframe and Surface Modeling
CO3	Learn various Solid and Assembly Modeling techniques used
CO4	Understand Meshing, Elements and Applications of FEA (CAAE) in Heat Transfer & Fluid Mechanics
	1D &2D problems
CO5	Analyze Accuracy of the CAE results

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2						1			1		
CO2	2				1							
CO3	2				1							
CO4	3	2	2	2	1							
CO5	3			1	3					1		

12612PEC203C	COM	IPUTATIONAL FLUID DYNAMICS	PE III	3-0-0	3 Credits			
	Examination Scheme							
Mid Semester	Test	Continuous Assessment	End-Sem Exam		Total			
20 Marks		20 Marks	60 I	Marks	100 Marks			

Course Objectives:

- 1. To Understand the concept of fluid dynamics, CFD techniques, convergence criteria.
- 2. To familiarize the students about the implementation of CFD in fluid mechanics and heat transfer problems.

Course Outcomes:

At the end of the course, student will be able to:

CO1	Develop an understanding for major theories, approaches and methodologies used in CFD.
CO2	Evaluate solution of aerodynamic flows, appraise & compare various CFD software, which Simplify
	flow problems and solve them exactly.
CO3	Design and setup flow problem properly within CFD context, performing solid using CAD package
	and producing grids via meshing tool.
CO4	Interpret both flow physics and mathematical properties of governing Navier-Stokes equation and
	define proper boundary conditions for solution.
CO5	Apply CFD software to model relevant engineering flow problems, analyze results and compare with
	the available data and discuss the findings.

Mapping of COs with POs:

POs	DO1	DOA	DOA	DOA	D O 5	DOC		DOG	DOG	DO10	DO11	DO1
\rightarrow	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POI0	POII	PO12
Cos↓												
CO1	1	1	-	-	-	-	-	-	-	-	-	-
CO2	1	-	2	3	1	1	-	-	-	I	-	I
CO3	2	1	1	2	1	-	1	-	-	-	-	-
CO4	1	-	-	1	1	1	-	-	-	-	-	-
CO5	-	-	2	2	2	1	-	-	-	2	-	1

12612PE203D	ADVANCE	ED REFRIGERATION	Program E	lective- III	Load/Per W	/eek-03	Credits-03	
	Exam Scheme							
Mid-Sen	n Test	Continuous Assess	sment	End-Sem Exam			Total	
20 Marks		20 Marks		60 Marks		1	00 Marks	

Course Objective

To present a problem oriented in depth knowledge of Advanced Refrigeration

To address the underlying concepts and methods behind Advanced Refrigeration

Course Outcomes: At the end of the course, students will be able to

CO1	Formulate and solve vapor compression refrigeration and multi-stage vapor compression systems.
CO2	Demonstrate different components of refrigeration system & their performance characteristics.
CO3	Enumerate different refrigerants, their application, and action with lubricating oil, retrofitting,
	refrigerant blends, and effects on refrigeration components.
CO4	Design & select refrigeration system for different applications.
CO5	Describe properties of cryogenic systems and different gas liquefaction.

Mapping of course outcomes with program outcomes

	The provide the second se											
POs→	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs↓												
CO1	1											
CO2	1											
CO3	1											
CO4						1						
CO5	2	1		1		2						

12612PE203E	DESIGN OF HEAT EXCHANGER	Elective III	3-0-0	3 Credits				
Exam Scheme								
Class Test	Continuous Assessment	End-Sem Exam Total						
20 Marks	20 Marks	60 Marks	8	100 Marks				

Course Outcomes: At the end of the course, students will be able to

CO1	Demonstrate the heat exchanger design methodology, and design considerations
CO2	Analyze performance of Heat exchanger by applying basic design methods.
CO3	Design double pipe, shell and tube, tube fin, plate type and plate-fin heat exchanger.
CO4	Model and illustrate heat exchanger based on I-law and irreversibility.
CO5	Demonstrate Fouling & Selection criteria of Heat Exchanger

Mapping of course outcomes with program outcomes

$POs \rightarrow$	PO1	PO2	PO	PO1								
COs↓	101	102	3	4	5	6	7	8	9	10	11	2
CO1	2	1							1			
CO2	1	1										
CO3			2						2			
CO4	1											
CO5	2	1							1			

12612PE203F	512PE203F ALTERNATIVE FUELS FOR IC ENGINE		3-0-0	3 Credits				
	Exam Scheme							
Mid-Sem Test	Continuous Assessment	End-Sem Exam		Total				
20 Marks	20 Marks	60 Marks		100 Marks				

Course Outcomes: At the end of the course, students will be able to

CO1	Demonstrate Structure of petroleum, Refining process, Products of refining process, Selec suitable fuels for use in SI engines. Understand various performances rating in SI engines.
CO2	Illustrate properties of petroleum products and classify them on their characteristic.
CO3	Describe and analyze Need for alternative fuels such as Ethanol, Methanol, LPG, CNG
	Hydrogen and their manufacturing procedure.
CO4	calculate and estimate performance and emission characteristics of alternative fuels
CO5	Analyze environmental effects of combustion of various fuels, suggest modification in thei
	usage.

Mapping of course outcomes with program outcomes

		_	. 0									
$POs \rightarrow COs \downarrow$	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	2										
CO2		1										
CO3	1	1		1	1							
CO4			1	1								
CO5	1	1			1	1						

12612OE204A	NEW LABOUR CODES OF INDIA	OE-I	3-0-0	3 Credits			
Exam Scheme							
Mid-Sem Test 20 Marks	Continuous Assessment 20 Marks	End-Sem 60 Ma	Bildill	Total 100 Marks			

Course Objectives:

- 1. To comprehend the historical development and evolution of labour laws in India, including the analysis of government policies and key reports shaping these legislations.
- 2. To analyse the role and significance of trade unions in the industrial landscape of India, including their formation, management, legal recognition, and adherence to constitutional and international frameworks.
- 3. To understand and apply the principles and procedures involved in resolving industrial disputes, including strikes, lock-outs, layoffs, retrenchment, closures, and disciplinary actions.
- 4. To examine and implement the provisions of the Code on Wages 2019 and the Code on Social Security 2020, focusing on minimum wages, payment regulations, equal remuneration, employee compensation, benefits, and social security schemes.
- 5. To develop proficiency in implementing occupational safety standards as per the Occupational Safety, Health and Working Conditions Code, 2020, ensuring compliance with health and safety regulations, working conditions, and special provisions for different categories of workers.

Course Outcomes: Students will

CO1	Analyze the evolution, history, and current government policies of labour laws in India, including key reports and international conventions that shape these laws.
CO2	evaluate the role, formation, management, and recognition of trade unions, along with their constitutional and international frameworks.
CO3	demonstrate the ability to identify and resolve industrial disputes, understanding the concepts of strikes, lock-outs, layoffs, retrenchment, and closures, as well as the procedures for disciplinary actions.
CO4	apply the provisions and implementation strategies of the Code on Wages 2019 and the Code on Social Security 2020, including minimum wages, payment of wages, equal remuneration, employee compensation, benefits, and various social security schemes.
CO5	implement knowledge about the Occupational Safety, Health and Working Conditions Code, 2020, including health and safety regulations, working conditions, and special provisions for different types of workers, ensuring compliance with these standards in various industrial settings.

URBAN UTILITIES PLANNING: WATER SUPPLY, SANITATION AND DRAINAGE

12612OE204B	UUP:SSD	OE-I	3-0-0	3 Credits		
Exam Scheme						
Class Test	Continuous Assessment	ntinuous Assessment End-Sem Exam Total		Total		
20 Marks	20 Marks	60 Marks 100		100 Marks		

Course Objectives:

- 1. To develop a clear understanding of the significance of water supply, sanitation, and drainage systems in urban areas.
- 2. To explore different sources of water supply for urban areas, including surface water, groundwater, and treated wastewater.
- 3. To delve into various sanitation systems, such as sewerage networks, on-site sanitation solutions, and wastewater treatment plants.
- 4. To learn about hydraulic calculations, pipe sizing, pump station design, and related technical aspects.

Course Outcomes:

- 1. Students should be able to demonstrate a clear understanding of the fundamental concepts related to water supply, sanitation, and drainage systems in urban settings.
- 2. Students should be capable of applying design principles to develop efficient and sustainable water supply, sanitation, and drainage systems that meet the needs of urban populations while considering factors such as population growth, climate change, and land use.
- 3. Students should be able to outline strategies for the effective management, operation, and maintenance of water supply, sanitation, and drainage infrastructure to ensure long-term sustainability and functionality.

12612OE204 C	ENVIRONMENT AND DEVELOPMENT	OE-I	3-0-0	3 Credits			
Exam Scheme							
Class Test	Continuous Assessment	End-Sem Exam Total		Total			
20 Marks	20 Marks	60 Marks 100 Mar		100 Marks			

Course Objectives:

1. To demonstrate the intricate relationships that exist between environmental influences and development processes and how these relationships can either help or hinder one another.

2. Identify and assess pivotal environmental challenges stemming from developmental endeavors, encompassing issues such as pollution, resource depletion, deforestation, biodiversity loss, and climate change.

3. Investigate the impact of climate change on the environment through rigorous study and analysis.

4. Analyze real-world case studies exemplifying both effective and unsuccessful endeavors to incorporate environmental considerations into development initiatives and policies.

Course Outcomes:

C01: Demonstrate a deep understanding of the complex interrelationships between environmental factors and socioeconomic development, including how they influence and shape each other.

CO2: Identify and critically analyze key environmental challenges resulting from development activities, and evaluate their impacts on ecosystems, natural resources, and human well-being.

12612OE204 D	2612OE204 ENTREPRENEURSHIP OE-I			3 Credits				
Exam Scheme								
Class Test	Continuous Assessment	tinuous Assessment End-Sem Exam Tota		Total				
20 Marks	20 Marks	60 Marks 100 M		100 Marks				

Course Objectives:

- 1. To understand the role of entrepreneurs in driving innovation and economic growth.
- 2. Guide students through the process of developing a comprehensive business plan, including market research, financial projections, competitive analysis, and risk assessment.
- 3. Provide students with essential financial literacy skills, including budgeting, financial forecasting, and understanding different funding options such as bootstrapping, loans, venture capital, and angel investment.
- 4. Guide students through the process of developing, prototyping, and refining their products or services to meet customer needs and expectations.
- 5. To explore different sources of funding for technology startups.

Course Outcomes:

- 1. Students will be able to generate innovative business ideas by identifying market gaps, customer needs, and emerging trends.
- 2. Students will be capable of developing comprehensive business plans that encompass market research, financial projections, and strategic goals.
- 3. Students will gain skills in budgeting, financial forecasting, and managing financial resources for their entrepreneurial ventures.
- 4. Students will be able to identify and manage potential risks associated with entrepreneurship, including financial, operational, and market risks.

12612OE204E	RESEARCH METHODOLOGY	Open Elective	3-0-0	3 Credits			
Exam Scheme							
Mid-Sem Test 20 Marks			Total 100 Marks				

Course Objectives:

- 1. To synthesize information from literature reviews in engineering to identify and articulate research problems, while discerning gaps in existing knowledge.
- 2. To evaluate ethical considerations inherent in engineering research, demonstrating ethical behavior across all phases of the research process.
- 3. To justify the selection of appropriate research designs, data collection methods, and statistical analyses to meet specific engineering research objectives, ensuring methodological rigor.
- 4. To utilize computational tools and software in engineering to construct mathematical models, and to validate these models against empirical data for the analysis of engineering problems.
- 5. To communicate research findings effectively in engineering through the creation of wellstructured reports, presentations, and visual aids, adhering to established professional standards and conventions.

CO1	Formulate research problems in engineering by synthesizing information from literature review and identifying gaps in existing knowledge.
CO2	Critically assess ethical considerations in research and demonstrate ethical behavior in all stages of the research process.
CO3	Select and justify appropriate research designs, data collection methods, and statistical analyses for specific research objectives.
CO4	Develop mathematical models using computational tools and software, and validate them against real- world data to analyze engineering problems.
CO5	Effectively communicate research findings through well-structured reports, presentations, and visual aids, adhering to professional standards and conventions.

Course Outcomes: Students will

12612PC205L	PG Lab-II	PCC	0-0-4	2 Credits			
Exam Scheme							
Continuous Asse	essment: 25 Marks	PR/ OR: 25 M	Total: 50 Marks				

Course Objectives:

- To apply the theoretical concepts and enhance understanding of the engineering concepts.
- To familiarize the students about the measurements and error calculations during experiments, modeling and simulation.
- To understand the design of experiments and report writing

Course Outcomes: At the end of the course, students will be able to

CO1	Study performance of various mechanical devices, analysis software
CO2	Draw and analyze performance curves of these machines/systems, analysis by using various
	software
CO3	Analyze the results obtained from the tests.

Mapping of course outcomes with program outcomes

	$s \rightarrow$	PO	Р	PO	PO	PO		Р	PO	PO	PO	PO	PO
C	Os↓	1	O2	3	4	5	6	07	8	9	10	11	12
CC	01	1		1			2					2	
CC	02	1			1								
CC)3	2					1						

12612MP206	MINI PROJECT	MP	0-0-2	1 Credits							
	Exam Scheme										
	uous Assessment 25 Marks	End-Sem) Total 50 Marks								

Course Objectives:

- 1. To apply the basic engineering laws through a modeling/ model/setup
- 2. To understand the report writing and result analysis
- 3. To understand the problem formulation

Course Outcomes: At the end of the course, student will be able to

CO1	Identify methods and materials to carry out experiments/develop code.
CO2	Reorganize the procedures with a concern for society, environment and ethics.
CO3	Analyze and discuss the results to draw valid conclusions.
CO4	Prepare a report as per recommended format and defend the work
CO5	Explore the possibility of publishing papers in peer reviewed journals/conference
	Proceedings.

Mapping of course outcomes with program outcomes

PC)s	Р	PO	PO9	PO10	PO11	PO12						
\rightarrow		0	2	3	4	5	6	7	8				
C	Os												
\downarrow													
CC	D1	2	2	1		2	2	1	1	2	2	1	2
CC)2	1	1	2	2			2	2	1	2	1	2
CC)3	2	2		3					2	2		1
CC	04				2				2	2	3		1
CC)5		1		2	2			2	2	3		1

INDIAN KNOWLEDGE SYSTEM (IKS)- CONCEPTS AND APPLICATIONS IN

ENGINEERING COURSE CODE: 12612AE207A (credit =3)

Course Outcomes: At the end of the course, student will be able to

CO1: To familiarize learners with major sequential development in Indian science, engineering, and technology.

CO2: To review & strengthen the ancient discovery and research in physics, chemistry, maths, metallurgy, astronomy, architecture, textile, transport, agriculture, and Ayurveda etc.

CO3: To help students to trace, identify and develop the ancient knowledge systems to make meaningful contribution to development of science today.

CO4: To help to understand the apparently rational, verifiable, and universal solution from ancient Indian knowledge system for the scientific, technological, and holistic development of physical, mental, and spiritual wellbeing.

12612AE207B	INDIAN KNOWLEDGE SYSTEM (IK	S)	3-0-0	3 Credits					
Exam Scheme									
Mid-Sem Test	Continuous Assessment	End-	Sem Exam	Total					
20 Marks	20 Marks	60 M	larks	100 Marks					

Course Objective

1. Introduce students to the foundational concepts, philosophies, and components of Indian knowledge systems, including ancient scriptures, philosophies, and traditional practices.

2. Introduce students to Vedic mathematical principles and computational techniques from ancient

Indian texts, demonstrating their practical use in engineering calculations.

3. Explore the potential benefits of incorporating yogic and meditative practices into engineering to enhance focus, creativity, and overall well-being.

4. Study architectural concepts from Indian traditions and evaluate how they can inform modern urban planning and sustainable architecture.

5. Encourage students to draw inspiration from IKS to develop innovative engineering solutions that align with ancient wisdom while meeting contemporary needs.

	accontest in the end of the course, stadents will be use to
CO1	Gain a comprehensive understanding of the philosophical, scientific, and technological aspects of
	Indian Knowledge Systems and their historical development.
CO2	Understand the philosophical underpinnings of IKS, including concepts like dharma, karma, and
	holistic thinking, and explore their relevance to engineering.
CO3	Understand Vedic mathematical principles and computational methods, and their potential relevance
	in solving modern engineering problems
CO4	Investigate the connections between yoga, meditation, and stress management, and their potential
	impact on mental well-being in engineering contexts.
CO5	Reflect on the ethical, cultural, and social dimensions of integrating IKS concepts into engineering
	practices and applications.

Course Outcomes: At the end of the course, students will be able to

Mapping of course outcomes with program outcomes

POs→	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
COs↓												
CO1	1											
CO2	1											
CO3	1											
CO4						1						
CO5	2	1		1		2						

12612AU208	DISASTER MANAGEMENT		0-0-2	Audit course							
	Exam Scheme										
Class Test	Continuous Assessment	End-Sem E									

Course Objectives:

- 1. Mastering strategies to manage disasters and ensure public safety during emergencies.
- 2. Identifying hazards, vulnerabilities, and crafting plans to reduce disaster impact.
- 3. Collaborative Skills: Working across disciplines to address complex disaster challenges.
- 4. Developing, improving, and implementing disaster management policies. Community Empowerment: Educating and engaging communities for proactive disaster readiness.

Course Outcomes:

- 1. Learners will be able to understand the basic concept of disaster(s) and disaster management, their significance, and types.
- 2. Learners will develop the analytical skills to study relationship between vulnerability, disasters, disaster prevention and risk reduction
- 3. Learners will gain a preliminary understanding of approaches to Disaster Risk Reduction (DRR)
- 4. Learners will be empowered with the awareness of institutional processes in the country for Disaster Management