

Yashoda Technical Campus Approved by AICTE Delhi/ Govt. of Maharashtra/ Accredited by NAAC NH-4, Wadhe, Satara 415011 Email : principalengg_ytc@yes.edu.in Call: 02162-271238/39 Mob. 9172220775

Faculty of Engineering

Department of Mechanical Engineering

Course Structure for Semester III B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (2022-23)

		Semes	ter III							
Course	Course Code	Course Title	Teac	hing Sch	neme	Ev	No. of			
Category			L	Т	Р	CA	MSE	ESE	Total	Credits
BSC7	BTBS301	Engineering Mathematics – III	3	1	-	20	20	60	100	4
PCC1	BTMC302	Fluid Mechanics	3	1	-	20	20	60	100	4
PCC2	BTMC303	Thermodynamics	3	1	-	20	20	60	100	4
ESC10	BTMES304	Materials Science and Metallurgy	3	1	-	20	20	60	100	4
PCC3	BTMCL305	Machine Drawing and CAD Lab	-	-	4	60	-	40	100	2
PCC4	BTMCL306	Mechanical Engineering Lab – I	-	-	4	60	-	40	100	2
PROJ-2	BTES209P	IT – 1 Evaluation	-	-	-	-	-	100	100	1
]	Total	12	4	<mark>8</mark>	<mark>200</mark>	80	<mark>420</mark>	<mark>700</mark>	<mark>21</mark>

Yashoda Technical Campus Approved by AICTE Delhi/ Govt. of Maharashtra/ Accredited by NAAC NH-4, Wadhe, Satara 415011 Email : principalengg_ytc@yes.edu.in Call: 02162-271238/39 Mob. 9172220775

Faculty of Engineering

Department of Mechanical Engineering

Fluid Mechanics

Course Outcomes	Content	Level
CO1	Explain basic properties of fluid, fluid statics, kinematics and dynamics.	Understanding
CO2	Identify various types of flow, flow patterns and their significance.	Understanding
CO3	Explain concepts of flow through pipes, boundary layer theory, forces on immersed bodies and dimensionless parameters.	Understanding
CO4	Derive various equations in fluid mechanics such as Euler's, Bernoulli's, Momentum, Continuity etc.	Apply
CO5	Solve the problems related to properties of fluid, fluid kinematics, fluid dynamics, laminar flow, pipe flow, dimensional analysis, boundary layer theory, and forces on immersed bodies.	Apply

Mapping of course outcomes with program outcomes

Course		Program Outcomes												
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	2													
CO2	2													
CO3	2													
CO4	2													
CO5	3	2												

Yashoda Technical Campus Approved by AICTE Delhi/ Govt. of Maharashtra/ Accredited by NAAC NH-4, Wadhe, Satara 415011 Email : principalengg_ytc@yes.edu.in Call: 02162-271238/39 Mob. 9172220775

Faculty of Engineering

Department of Mechanical Engineering

Thermodynamics

CO1	Define the terms like system, boundary, properties, equilibrium, work, heat, ideal
01	gas, entropy etc. used in thermodynamics.
CO2	Studied different laws of thermodynamics and apply these to simple thermal
	systems to study energy balance.
CO3	Studied Entropy, application and disorder.
CO4	Studied various types of processes like isothermal, adiabatic, etc. considering system
04	with ideal gas and represent them on p-v and T-s planes.
CO5	Represent phase diagram of pure substance (steam) on different thermodynamic
0.05	planes like p-v, T-s, h-s, etc. Show various constant property lines on them.

Mapping of course outcomes with program outcomes

Course		Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	1											
CO2	1	2	1										
CO3		1	1										
CO4	2												
CO5	1	1											

Approved by AICTE Delhi/ Govt. of Maharashtra/ Accredited by NAAC NH-4, Wadhe, Satara 415011

Email : principalengg_ytc@yes.edu.in Call: 02162-271238/39 Mob. 9172220775 Faculty of Engineering

Department of Mechanical Engineering

Material Science and Metallurgy

CO1	Study various crystal structures of materials
CO2	Understand mechanical properties of materials and calculations of same using
	appropriate equations
CO3	Evaluate phase diagrams of various materials
CO4	Suggest appropriate heat treatment process for a given application
CO5	Prepare samples of different materials for metallography
CO6	Recommend appropriate NDT technique for a given application

Mapping of course outcomes with program outcomes

Course		Program Outcomes												
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	2	1											
CO2	3	2	2	3	2									
CO3	2	1	2	1	1									
CO4	1	2	2	1	2	1	2	1	1	1				
CO5	1	1	1	3	2		1		1					
CO6	1	1	2	2	2	1	2		1	1				

Machine Drawing and CAD Lab

CO1	Interpret the object with the help of given sectional and orthographic views.
CO2	Construct the curve of intersection of two solids
CO3	Draw machine element using keys, cotter, knuckle, bolted and welded joint
CO4	Assemble details of any given part. i. e. valve, pump, machine tool part etc.
CO5	Represent tolerances and level of surface finish on production drawings
CO6	Understand various creating and editing commands in Auto Cad

Mapping of course outcomes with program outcomes

Course Outcomes		Program Outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1											
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1	
CO1	2								3	2		1	
CO2	2	1							2	1		1	
CO3	2								2	1			
CO4	2	2			1				2	1		1	
CO5	1	1			1				2	1		1	
CO6	1	1			1				2	2		1	

Vision of the Department

To be identified as a department with excellence in academics by synergism of teaching- learning, skill development and research. Mission of the Department

M1: To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.

M2: To hone employability and entrepreneurship skills of the students through industry-institute interaction.

M3: To create an environment for the students to excel in mechanical engineering field, engage in research and development activity and participate in professional activities.

Yashoda Shiskshan Prsarak Mandal's Yashoda Technical Campus Approved by AICTE Delhi/ Govt. of Maharashtra/ Accredited by NAAC NH-4, Wadhe, Satara 415011 Email : principalengg_ytc@yes.edu.in Call: 02162-271238/39 Mob. 9172220775 Faculty of Engineering

Department of Mechanical Engineering

Course Structure for Semester IV B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (2022-23)

		Semes	ter IV	7						
Course	Course Code	Course Title	Tea	ching Sc	heme	Ev	aluatio	on Sch	eme	N P
Category			L	Т	Р	CA	MSE	ESE	Tota l	No. of Credits
PCC 5	BTMC401	Manufacturing Processes – I	3	1	-	20	20	60	100	4
PCC 6	BTMC402	Theory of Machines-I	3	1	-	20	20	60	100	4
HSSMC3	BTHM403	Basic Human Rights	3	-	-	20	20	60	100	3
ESC11	BTMES404	Strength of Materials	3	1	-	20	20	60	100	4
PEC 1	BTMPE405A- <mark>C</mark>	Elective-I	3	-	-	20	20	60	100	3
PCC7	BTMCL406	Mechanical Engineering Lab-II	-	-	4	60	-	40	100	2
PROJ- <mark>3</mark>	BTMI40 <mark>7</mark>	Field Training /Industrial Training (minimum of 4 weeks which can be completed partially in the third and fourth semester or in one semester itself)	-	-	-	-	-	-	-	Credits to be evaluated in Sem V
		Total	15	4	<mark>4</mark>	<mark>160</mark>	100	<mark>340</mark>	<mark>600</mark>	<mark>20</mark>

Vision of the Department

To be identified as a department with excellence in academics by synergism of teachinglearning, skill development and research. Mission of the Department

M1: To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.

M2: To hone employability and entrepreneurship skills of the students through industry-institute interaction.

M3: To create an environment for the students to excel in mechanical engineering field, engage in research and development activity and participate in professional activities.

Approved by AICTE Delhi/ Govt. of Maharashtra/ Accredited by NAAC NH-4, Wadhe, Satara 415011 Email : principalengg_ytc@yes.edu.in Call: 02162-271238/39 Mob. 9172220775

Faculty of Engineering

Department of Mechanical Engineering

Semester IV Manufacturing Processes-I

CO1	Identify castings processes, working principles and applications and list various defects in metal casting
CO2	Understand the various metal forming processes, working principles and applications
CO3	Classify the basic joining processes and demonstrate principles of welding, brazing and soldering.
CO4	Study center lathe and its operations including plain, taper turning, work holding devices and cutting tool.
CO5	Understand milling machines and operations, cutters and indexing for gear cutting.
CO6	Study shaping, planning and drilling, their types and related tooling's

Mapping of course outcomes with program outcomes

Course		Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	1	1		1	1				1		1	
CO2	2	2	1		1	1				1		1	
CO3	2	1	1		1	1				1		1	
CO4	1		1		1	1				1		1	
CO5	2		1		1	1				1		1	
CO6	1				1	1				1		1	

Vision of the Department

To be identified as a department with excellence in academics by synergism of teaching- learning, skill development and research. **Mission of the Department**

M1: To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.

M2: To hone employability and entrepreneurship skills of the students through industry-institute interaction.

M3: To create an environment for the students to excel in mechanical engineering field, engage in research and development activity and participate in professional activities.

Approved by AICTE Delhi/ Govt. of Maharashtra/ Accredited by NAAC NH-4, Wadhe, Satara 415011 Email : principalengg_ytc@yes.edu.in Call: 02162-271238/39 Mob. 9172220775 Faculty of Engineering

Department of Mechanical Engineering

Theory of Machines- I

CO1	Define basic terminology of kinematics of mechanisms
CO2	Classify planar mechanisms and calculate its degree of freedom
CO3	Perform kinematic analysis of a given mechanism using ICR and RV methods
CO4	Introduction of different types of lubrication system.
CO5	Perform kinematic analysis of slider crank mechanism using Klein's construction and
005	analytical approach
CO6	Perform balancing of unbalance forces in rotating masses, different types of single/multi
000	cylinder reciprocating engines in different positions.
	Manning of course outcomes with program outcomes

	Mapping of course outcomes with program outcomes													
ourse		Program Outcomes												
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1				1								3		
CO2				1								3		
CO3	1	1		2								3		
CO4	1													
CO5	1	1		3								2		
CO6	1	1										2		

Basic Human Rights

CO1	Understand the history of human rights.
CO2	Learn to respect others caste, religion, region and culture.
CO3	Be aware of their rights as Indian citizen.
CO4	Understand the importance of groups and communities in the society.
CO5	Realize the philosophical and cultural basis and historical perspectives of human rights.
CO6	Make them aware of their responsibilities towards the nation.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
CO1						2						
CO2												
CO3												
CO4									3			
CO5								2		2		
CO6												1

Vision of the Department

To be identified as a department with excellence in academics by synergism of teaching- learning, skill development and research.

Mission of the Department

M1: To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.

M2: To hone employability and entrepreneurship skills of the students through industry-institute interaction.

M3: To create an environment for the students to excel in mechanical engineering field, engage in research and development activity and participate in professional activities.

Yashoda Technical Campus Approved by AICTE Delhi/ Govt. of Maharashtra/ Accredited by NAAC NH-4, Wadhe, Satara 415011

Email : principalengg_ytc@yes.edu.in Call: 02162-271238/39 Mob. 9172220775

Faculty of Engineering

Department of Mechanical Engineering

Strength of Materials

CO1	State the basic definitions of fundamental terms such as axial load, eccentric load,
	stress, strain, E, μ, principle stresses, etc.
CO2	Analyze the stresses and strain energy in different load cases
CO3	Design the columns based on deflection
CO4	Design a beam based on bending and shafts based on torsion
CO5	Analyze given beam for calculations of SF and BM
CO6	Calculate slope and deflection at a point on cantilever /simply supported beam
000	using double integration, Macaulay's, Area-moment and superposition methods

Mapping of course outcomes with program outcomes

Course	Prog	Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1		1				1			,	2
CO2	1	1	2	2								2
CO3	1	1	2	2		1						3
CO4	1	3	2	1								2
CO5	1	1	2	3								Ź.

Numerical Methods in Mechanical Engineering

Course Outcomes: At the end of the course, students will be able to:

CO1	Describe the concept of error
CO2	Illustrate the concept of various Numerical Techniques
CO3	Evaluate the given Engineering problem using the suitable Numerical Technique
CO4	Develop the computer programming based on the Numerical Techniques

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3		1	3							
CO2	3	3		1	3							
CO3	3	3		1	3							
CO4	3	3		1	3							

Vision of the Department

To be identified as a department with excellence in academics by synergism of teaching- learning, skill development and research. Mission of the Department

- M1: To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.
- M2: To hone employability and entrepreneurship skills of the students through industry-institute interaction.
- M3: To create an environment for the students to excel in mechanical engineering field, engage in research and development activity and participate in professional activities.

Approved by AICTE Delhi/ Govt. of Maharashtra/ Accredited by NAAC NH-4, Wadhe, Satara 415011

Email : principalengg_ytc@yes.edu.in Call: 02162-271238/39 Mob. 9172220775

Faculty of Engineering

Department of Mechanical Engineering

Sheet Metal Engineering

CO1	Recognize common manufacturing processes of Sheet Metal Fabrication
CO2	Understand the principles of design and fabricate of sheet metal products and recognize
	common material used in the industry
CO3	Distinguish Shearing, Drawing and Pressing etc. processes.
CO4	Know types of dies and formability.
CO5	Select mechanical or hydraulic presses for the given process

Mapping of course outcomes with program outcomes

Carrier		Program Outcomes											
Course		Program Outcomes PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	1	1	3	2				2	1		1	
CO2	3			1	3	2	3					2	
CO3	1	1		3	3	2	1		3		1	3	
CO4	3	3	1	1	3		1	1	1				
CO5	3	2			3	3	2				1	3	

Fluid Machinery

CO1	Understand and apply momentum equation
CO2	Understand and explain Hydrodynamic Machines
CO3	Explain difference between impulse and reaction turbines
CO4	Find efficiencies, draw velocity triangles
CO5	Explain governing mechanisms for hydraulic turbines
CO6	Explain working of various types of pumps, draw velocity diagrams, do simple Calculations
CO7	Design simple pumping systems

Mapping of course outcomes with program outcomes

Course		Program Outcomes												
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	1									1		
CO2	3		3				2					1		
CO3	3	2										1		
CO4	3	3	2									1		
CO5			3									1		
CO6	3	3	3	1	1							1		
CO7	3	3		3								1		

Vision of the Department

To be identified as a department with excellence in academics by synergism of teaching- learning, skill development and research. Mission of the Department

- M1: To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.
- M2: To hone employability and entrepreneurship skills of the students through industry-institute interaction.
- M3: To create an environment for the students to excel in mechanical engineering field, engage in research and development activity and participate in professional activities.