

Yashoda Technical Campus

Department of Mechanical Engineering

Course Structure for Semester V B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (2022-23)

		Sen	nester V							
Course	Course Code	Course Title	Teac	hing Scl	heme	E	valuatio	on Sch	eme	No. of
Category			L	T	P	CA	MSE	ESE	Total	Credits
PCC 8	BTMC 501	Heat Transfer	3	1	-	20	20	60	100	4
PCC 9	BTMC 502	Machine Design – I	3	1	-	20	20	60	100	4
PCC 10	BTMC 503	Theory of Machines- II	3	1	-	20	20	60	100	4
PEC 2	BTMPE 504A-C BTAPE50 <mark>4</mark> A,D	Elective-II	3	-	-	20	20	60	100	3
OEC 1	BTMOE 505A-D	Open Elective-I	3	-	-	20	20	60	100	3
PCC 11	BTMC 506	Applied Thermodynamics	3		-	<mark>20</mark>	<mark>20</mark>	<mark>60</mark>	100	3
PCC12	BTMCL 50 <mark>7</mark>	Mechanical Engineering Lab – III	-	-	6	60	-	40	100	3
PROJ- <mark>3</mark>	BTMI 40 <mark>8</mark>	IT – 2 Evaluation	-	-	-	-	-	100	100	1
		Total	<mark>18</mark>	3	<mark>6</mark>	180	120	500	800	<mark>2</mark> 5

To be identified as a department with excellence in academics by synergism of teaching-learning, skill development and research.

Mission of the Department

M1: To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.

M2: To hone employability and entrepreneurship skills of the students through industry-institute interaction.

M3: To create an environment for the students to excel in mechanical engineering field, engage in research and development activity and participate in professional activities. M4: To develop an ability to use techniques, skills, modern software and machine tools necessary in the practice of Mechanical Engineering Profession.

Email: principalengg_ytc@yes.edu.in Call: 02162-271238/39 Mob. 9172220775 **Faculty of Engineering**

Department of Mechanical Engineering

Semester - V

Heat Transfer

CO1	Explain the laws of heat transfer and deduce the general heat conduction equation and to explain it for 1-D steady state heat transfer in regular shape bodies
CO2	Describe the critical radius of insulation, overall heat transfer coefficient, thermal conductivity and lumped heat transfer
CO3	Interpret the extended surfaces
CO4	Illustrate the boundary layer concept, dimensional analysis, forced and free convection under different conditions
CO5	Describe the Boiling heat transfer, Evaluate the heat exchanger and examine the LMTD and NTU methods applied to engineering problems
CO6	Explain the thermal radiation black body, emissivity and reflectivity and evaluation of view factor and radiation shields

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1			1				1			
CO2	3	2			1							
CO3	3	1			2		2		1			
CO4	3	3		1	1				1			
CO5	3	3	3		1		2					
CO6	2	3		2	2		2		1			

Vision of the Department

To be identified as a department with excellence in academics by synergism of teaching- learning, skill development and research.

M1: To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.

M2: To hone employability and entrepreneurship skills of the students through industry-institute interaction.

M3: To create an environment for the students to excel in mechanical engineering field, engage in research and development activity and participate in professional activities.

Yashoda Technical Campus

Faculty of Engineering

Department of Mechanical Engineering

Machine Design - I

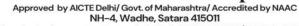
CO1	Formulate the problem by identifying customer need and convert into design
COI	Specification
CO2	Understand component behavior subjected to loads and identify failure criteria
CO3	Analyze the stresses and strain induced in the component
CO4	Design of machine component using theories of failures
CO5	Design of component for finite life and infinite life when subjected to fluctuating load
CO6	Design of components like shaft, key, coupling, screw and spring

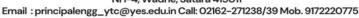
Mapping of course outcomes with program outcomes

Course					F	Progran	n Outc	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1						1				1
CO2	3	2		1		1		1		1		1
CO3	1	1				1		1		1		1
CO4	3	3	2	1		2		1		1		1
CO5	1	1				1		1		1		1
CO6	2	2	2	1		1		1		1		1

Vision of the Department

To be identified as a department with excellence in academics by synergism of teaching- learning, skill development and research.


M1: To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.


M2: To hone employability and entrepreneurship skills of the students through industry-institute interaction.

M3: To create an environment for the students to excel in mechanical engineering field, engage in research and development activity and participate in professional activities.

Yashoda Technical Campus

Faculty of Engineering

Department of Mechanical Engineering

Theory of Machines - II

CO1	Identify and select type of belt drive for a particular application
CO2	Evaluate gear tooth geometry and select appropriate gears, gear trains
CO3	Characterize flywheels as per application requirement
CO4	Understand gyroscopic effects in ships, aeroplanes, and road vehicles.
CO5	Understand free and forced vibrations of single degree freedom systems

Mapping of course outcomes with program outcomes

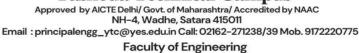
		mapping of course outcomes with program outcomes													
Course		Program Outcomes													
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	2	3	1		2		1			2		2			
CO2	2	3					1					3			
CO3		2		1											
CO4	2	3		2							_	3			
CO5	2	3		3								3			

Vision of the Department

To be identified as a department with excellence in academics by synergism of teaching-learning, skill development and research.

Mission of the Department

M1: To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.


 $M2: To \ hone \ employability \ and \ entrepreneurship \ skills \ of \ the \ students \ through \ industry-institute \ interaction.$

M3: To create an environment for the students to excel in mechanical engineering field, engage in research and development activity and participate in professional activities.

Yashoda Technical Campus

Department of Mechanical Engineering

Fundamentals of Automobile Design

CO1	Identify the different parts of the automobile.
CO2	Explain the working of various parts like engine, transmission, clutch, brakes etc.,
CO3	Demonstrate various types of drive systems.
CO4	Apply vehicle troubleshooting and maintenance procedures.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1										
CO2	1	2		2		1						
CO3	1	1		1	1							
CO4	2			3	1							

Automobile Engineering

CO1	Identify the different parts of the automobile.	
CO2	Explain the working of various parts like engine, transmission, clutch, brakes etc.,	
CO3	Demonstrate various types of drive systems; front and rear wheels, two and four whe	
drive		
CO4	Apply vehicle troubleshooting and maintenance procedures.	
CO5	Analyze the environmental implications of automobile emissions. And suggest suitab	
	regulatory modifications.	

Mapping of course outcomes with program outcomes

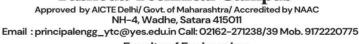
CourseOu		Program Outcomes										
tcomesC	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8 F	9 P	O10PC	11PO	2
O1	2	1										
CO2	1	2		2		1						
CO3	1	1		1	1							
CO4	2			3	1							
CO5		2			1	1	2					
CO6	1		2			2						

Vision of the Department

To be identified as a department with excellence in academics by synergism of teaching- learning, skill development and research.

Mission of the Department

- M1: To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.
- M2: To hone employability and entrepreneurship skills of the students through industry-institute interaction.
- M3: To create an environment for the students to excel in mechanical engineering field, engage in research and development activity and participate in professional activities.


M4: To develop an ability to use techniques, skills, modern software and machine tools necessary in the practice of Mechanical Engineering Profession.

el

Yashoda Technical Campus

Faculty of Engineering

Department of Mechanical Engineering

Renewable Energy Sources

:

CO1	Explain the difference between renewable and non-renewable energy
CO2	Describe working of solar collectors
CO3	Explain various applications of solar energy
CO4	Describe working of other renewable energies such as wind, biomass, nuclear

Mapping of course outcomes with program outcomes

							<u> </u>						
Course		Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	2	3		2	3	3	3	2	2		2	
CO2	1	1	3	1	2	3	3	3	2	2		2	
CO3	2	1	1				3	2		1		2	
CO4	3	3			2	3	3	2				1	

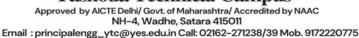
Applied Thermodynamics

CO1	Define the terms like calorific value of fuel, stoichiometric air-fuel ratio, excess air, equivalent evaporation, boiler efficiency, etc. Calculate minimum air required for combustion of fuel.
CO2	Studied and Analyze gas power cycles and vapour power cycles and derive expressions for the performance parameters like thermal efficiency.
CO3	Classify various types of boilers, nozzle, steam turbine and condenser used in steam power plant.
CO4	Classify various types condenser, nozzle and derived equations for its efficiency.
CO5	Draw P-v diagram for single-stage reciprocating air compressor, with and without clearance volume, and evaluate its performance. Differentiate between reciprocating androtary air compressors.

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1										
CO2	1	2										
CO3	1											1
CO4			1									
CO5		2										

Vision of the Department


To be identified as a department with excellence in academics by synergism of teaching-learning, skill development and research.

Mission of the Department

- M1: To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.
- M2: To hone employability and entrepreneurship skills of the students through industry-institute interaction.
- M3: To create an environment for the students to excel in mechanical engineering field, engage in research and development activity and participate in professional activities.
- M4: To develop an ability to use techniques, skills, modern software and machine tools necessary in the practice of Mechanical Engineering Profession.

Yashoda Technical Campus

Faculty of Engineering

Department of Mechanical Engineering

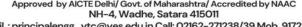
Course Structure for Semester VI B. Tech in Mechanical Engineering / B. Tech. in Mechanical Engineering (2022-23)

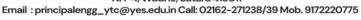
		Seme	ster VI							
Course	Course Code	Course Title	Teac	hing Sc	heme	Ev	valuati	on Sch	eme	No. of
Catego ry			L	Т	P	CA	MSE	ESE	Total	Credits
PCC12	BTMC 601	Manufacturing Processes-II	3	1	-	20	20	60	100	4
PCC13	BTMC 602	Machine Design-II	3	1	-	20	20	60	100	4
PEC3	BTMPE 603A-C BTAPE 603C,E	Elective-III	3		-	20	20	60	100	3
PEC4	BTMPE 604A- D BTAPE 604B	Elective-IV	3		-	20	20	60	100	3
OEC2	BTMOE 605A-E	Open Elective-II	3	-	-	20	20	60	100	<mark>3</mark>
PCC14	BTMCL 606	Mechanical Engineering Lab – IV	-	-	6	60	-	40	100	3
PROJ-4	BTMS607	B Tech Seminar	-	-	2	<mark>60</mark>		<mark>40</mark>	100	1
PROJ- <mark>5</mark>	BTMP 608	Mini Project (TPCS)	-	-	2	60	-	40	100	1
PROJ- <mark>6</mark>	BTMI 60 <mark>9</mark> (IT-3)	Field Training / Industrial Training (minimum of 4 weeks which can be completed partially in fifth semester and sixth semester or in one semester itself).	-	-	-	-	-	-	-	Credits to be evaluated in Sem VII
	,	Total	15	2	10	280	100	420	800	2 2

Vision of the Department

To be identified as a department with excellence in academics by synergism of teaching-learning, skill development and research.

Mission of the Department


M1: To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.


M2: To hone employability and entrepreneurship skills of the students through industry-institute interaction.

M3: To create an environment for the students to excel in mechanical engineering field, engage in research and development activity and participate in professional activities.

Yashoda Technical Campus Approved by AICTE Delhi/ Govt. of Maharashtra/ Accredited by NAAC

Faculty of Engineering

Department of Mechanical Engineering

Semester - VI

Manufacturing Processes - II

CO1	Understand the process of powder metallurgy and its applications
CO2	Calculate the cutting forces in orthogonal and oblique cutting
CO3	Evaluate the machinability of materials
CO4	Understand the abrasive processes
CO5	Explain the different precision machining processes
CO6	Understanding plastic

Mapping of course outcomes with program outcomes

Course					Pro	gram (Outcon	nes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	1	1			2					1
CO2	3	3										1
CO3	3	3	1	2	3							1
CO4	3	3	2									1
CO5	3	3	1	3								1
CO6	3	1	3	3	3			2				1

Vision of the Department

To be identified as a department with excellence in academics by synergism of teaching- learning, skill development and research.

Mission of the Department

M1: To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.

- M2: To hone employability and entrepreneurship skills of the students through industry-institute interaction.
- M3: To create an environment for the students to excel in mechanical engineering field, engage in research and development activity and participate in professional activities.
- M4: To develop an ability to use techniques, skills, modern software and machine tools necessary in the practice of Mechanical Engineering Profession.

Yashoda Technical Campus

Faculty of Engineering

Department of Mechanical Engineering

Machine Design - II

CO1	Define function of bearing and classify bearings.
CO2	Understanding failure of bearing and their influence on its selection.
CO3	Classify the friction clutches and brakes and decide the torque capacity and friction disk parameter.
CO4	Select materials and configuration for machine element like gears.
CO5	Design of elements like gears, belts for given power rating

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1						1				1
CO2	3	2		1		1		1		1		1
CO3	1	1				1		1		1		1
CO4	3	3	2	1		2		1		1		1
CO5	1	1				1		1		1		1

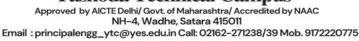
IC Engines

CO1	Understand various types of I.C. Engines and Cycles of operation.
CO2	Analyze the effect of various operating variables on engine performance
CO3	Identify fuel metering and fuel supply systems for different types of engines
CO4	Understand normal and abnormal combustion phenomena in SI and CI engines
CO5	Evaluate performance Analysis of IC Engine and Justify the suitability of IC Engine for different application
CO6	Understand the conventional and non-conventional fuels for IC engines and effects of emission formation of IC engines, its effects and the legislation standards

Mapping of course outcomes with program outcomes

Course		Program Outcomes										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3						3					
CO2		2										
CO3	2											
CO4	2											
CO5					2		3					
CO6	2											

Vision of the Department


To be identified as a department with excellence in academics by synergism of teaching- learning, skill development and research.

Aission of the Department

- M1: To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.
- $M2: To \ hone \ employability \ and \ entrepreneurship \ skills \ of \ the \ students \ through \ industry-institute \ interaction.$
- M3: To create an environment for the students to excel in mechanical engineering field, engage in research and development activity and participate in professional activities.
- M4: To develop an ability to use techniques, skills, modern software and machine tools necessary in the practice of Mechanical Engineering Profession.

Yashoda Technical Campus

Faculty of Engineering

Department of Mechanical Engineering

Engineering Metrology and Quality Control

CO1	Identify techniques to minimize the errors in measurement
CO2	Identify methods and devices for measurement of length, angle, and gear and thread parameters, surface roughness and geometric features of parts.
CO3	Choose limits for plug and ring gauges.
CO4	Explain methods of measurement in modern machineries
CO5	Select quality control techniques and its applications
CO6	Plot quality control charts and suggest measures to improve the quality of product and reduce cost using Statistical tools.

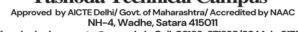
Mapping of course outcomes with program outcomes

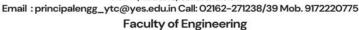
Course					P	rogran	1 Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				3								2
CO2		2	2		2							
CO3			2	3	2							
CO4						3						
CO5	1					2		3	3		3	2
CO6	1					2		3	3		2	2

Vision of the Department

To be identified as a department with excellence in academics by synergism of teaching- learning, skill development and research.

Mission of the Department


M1: To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.


M2: To hone employability and entrepreneurship skills of the students through industry-institute interaction.

M3: To create an environment for the students to excel in mechanical engineering field, engage in research and development activity and participate in professional activities.

Yashoda Technical Campus

Department of Mechanical Engineering

Product Life Cycle Management

CO1	Outline the concept of PLM.
CO2	Illustrate the PDM system and its importance.
CO3	Illustrate the product design process.
CO4	Build the procedure for new product development.
CO5	Classify and compare various technology forecasting methods.
CO6	Outline the stages involved in PLM for a given product.

Mapping of course outcomes with program outcomes

Course Outcomes	Program Outcomes											
Course outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1				1						1	
CO2	1				1		1				1	1
CO3	1		1		1							
CO4	1		1		1						1	
CO5	1				1		1					
CO6	1				1				1			1

Energy Conservation and Management

CO1	Understand energy problem and need of energy management
CO2	Carry out energy audit of simple units
CO3	Study various financial appraisal methods
CO4	Analyze cogeneration and waste heat recovery systems
CO5	Do simple calculations regarding thermal insulation and electrical energy conservation

Mapping of course outcomes with program outcomes

Course					P	rogran	Outco	omes				
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3		2	3			2	2		2
CO2	1	1	3	1	2	3			2	2		2
CO3	2	1	1							1		2
CO4	3	3			2	3						1
CO5			3			2						1

Vision of the Department

To be identified as a department with excellence in academics by synergism of teaching- learning, skill development and research.

Mission of the Department

- M1: To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.
- M2: To hone employability and entrepreneurship skills of the students through industry-institute interaction.
- M3: To create an environment for the students to excel in mechanical engineering field, engage in research and development activity and participate in professional activities.
- M4: To develop an ability to use techniques, skills, modern software and machine tools necessary in the practice of Mechanical Engineering Profession.

Yashoda Technical Campus

Approved by AICTE Delhi/ Govt. of Maharashtra/ Accredited by NAAC NH-4, Wadhe, Satara 415011
Email: principalengg_ytc@yes.edu.in Call: 02162-271238/39 Mob. 9172220775

Faculty of Engineering

Department of Mechanical Engineering

Wind Energy

CO1	Understand historical applications of wind energy
CO2	Understand and explain wind measurements and wind data
CO3	Determine Wind Turbine Power, Energy and Torque
CO4	Understand and explain Wind Turbine Connected to the Electrical Network AC and DC
CO5	Understand economics of wind energy

Mapping of course outcomes with program outcomes

Course	Program Outcomes											
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1							2	2	2	1		1
CO2		3	2	1	3	2	2	2	2			1
CO3	3	3	1	1	2	2	1					1
CO4	3	3		1								1
CO5	3	2	1									1

Vision of the Department

To be identified as a department with excellence in academics by synergism of teaching- learning, skill development and research.

Mission of the Department

- M1: To develop state of the art facilities to stimulate faculty, staff and students to create, analyze, apply and disseminate knowledge.
- $M2: To \ hone \ employability \ and \ entrepreneurship \ skills \ of \ the \ students \ through \ industry-institute \ interaction.$
- M3: To create an environment for the students to excel in mechanical engineering field, engage in research and development activity and participate in professional activities.
- M4: To develop an ability to use techniques, skills, modern software and machine tools necessary in the practice of Mechanical Engineering Profession.