	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE							
	Supplementary Examination – Summer 2022							
	Course: B. Tech. Branch :Civil Engineering Seme					ester :IV		
	Subject Code & Name: BTCVC402, Surveying-II Max Marks: 60 Data: Duration: 3 Hr							
	Instruction	•						
	 All the questions are compulsory. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. Use of non-programmable scientific calculators is allowed. Assume suitable data wherever necessary and mention it clearly. 							
	<u> </u>					(Level/CO)	Marks	
Q. 1	Solve Any	Two of the	e following	g.			12	
A)	A tacheom	neter was se	t up a stati	on C & following rea	ding were obtained on	CO1	06	
	a staff held	d vertical						
	Inst.	Staff	Vertical	Hair reading(m)	Remark			
	Station	station	angle					
	С	BM	$-5^{0}20^{1}$	1.50,1.800,2.450	RL of BM.=750.50m			
	С	D	$+8^{0}12^{1}$	0.750,1.500,2.250	-			
	Calculate	the horizor	ntal distanc	ce CD & RL of D, wh	nen the constants of			
	instrument	ts.						
B)	Explain A	nallatic lens	in detail v	with neat labeled diag	gram.	CO1	06	
C)	Explain th	ne theory of	Stadia Tao	cheometry.		CO2	06	
Q.2	Solve Any Two of the following.							
A)	Define and	l Explain i)	Signals ii)	Satellite Station iii)	Spherical triangle.	CO2	06	
B)	Define Tri	angulation a	and Explai	n Classification of Tr	riangulation System.	CO2	06	
C)	Define Dec	a lina List	down boos	maanina aquinma	ate and write down	CO2	06	
		se Illie, List	uowii base	e measuring equipment				
		e considered	i wille sele	coming the base line				
0.3	Solve Anv	• One of the	e following	2.			12	
(A)	The merid	ian altitude	of the Sun	's lower limb was ob	eserved to be $41^{\circ}12^{\circ}26^{\circ}$	CO3	12	
	at a place i	in longitude	2 72°20'45	" W to determine th	e latitude of the place			
	The Sun w	vas to the s	$\frac{1}{2} = \frac{1}{2} $	zenith The declinat	tion of the sun at GAN			
	on the day	r of observe	$\frac{1}{100} \text{ was}^{-1}$	19°38'52" N increas	ing 7.46" per hour and			
	in semi di	ameter 1601	$4^{2}2^{2}$	termine the Latitude λ	$n_{\rm c}$ $r_{\rm r}$ per nour and $n_{\rm c}$			
					or the place.			
B)	Define i)	Vertical cir	cle ii) The	e Prime Vertical iii)	The Longitude iv) The	CO3	12	
	Latitude v) The Decli	nation vi)	Hour Circle	8.00000 11) 1110			
	Latitude v) The Deenharon vi) floar Chele							

C)	Explain method of determination of latitude by meridian altitude of Sun or Starwith neat labeled diagram	CO3	12			
Q.4	Solve Any Two of the following.		12			
A)	Define Combined Curve. Explain elements of Combined curve with neat labeleddiagram.	CO4	06			
B)	What is Shift? Prove that a transition curve bisects a shift and that a shift bisectsa Transition Curve.	CO4	06			
C)	Calculate the RL of the various pegs on a vertical curve connecting two grades of +0.6% and -0.6%. The chainage and the RL of intersection point are 550 and 325.50 m respectively. The rate of change of grade is 0.1% per 30 m. B T_1 T_2 B_2 T_2	CO4	06			
Q. 5	Solve Any One of the following.		12			
A)	 a) A line AB measures 15cm on a photograph taken with a camera having focal length of 21.5cm. The same line measures 5 cm on a map drawn to a scale of 1/45000. If the average altitude is 450 m, Calculate the flying height of the aircraft. 	CO4	06			
	b) A line 3350 m long lying at an elevation of 500m measure 10.50 cm on a vertical photograph. The focal length of the camera is 10cm. If the elevation of apoint is 1300m. Calculate the scale of photograph.	CO4				
B)	a) Write down comparison between Map and Aerial Photographb) Define: i) Forward overlap ii) Side overlap iii) Relief Displacement	CO5 CO5	06			
C)	a) Write down applications of GPS and GIS.b) Explain key component of GIS	CO6 CO6	06			
	*** End ***					

The grid and the borders of the table will be hidden before final printing.

	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE								
	End Semester Examination – Summer Supplementary 2022								
	Course: B. Tech.Branch: Civil EngineeringSemester: IV								
	Subject Code & Name: <u>BTCVC403_Structural Mechanics – I (2017 Pattern)</u>								
	Max Marks:60 Date: 12/01/2023 Duration: 3 Hrs. (Time 2:00 to 5:00)								
	 Instructions to the Students: All the questions are compulsory. The level of question/expected answer as per OBE or the Course Outcome (which the question is based is mentioned in () in front of the question. Use of non-programmable scientific calculators is allowed. Assume suitable data wherever necessary and mention it clearly. 	(CO) on							
		(Level/	Marks						
		CO)							
Q. 1	Solve Any Two of the following.								
	Fig 3.1 (A)	02	6 M						
B)	Find the reaction of propped cantilever beam subjected UDL of ' 10 ' kN/m throughout its span ' 5 m ' by using strain energy principles.	CO2	6 M						
C)	A simply supported beam of span L, carries a concentrated load P at a distance 'a' left hand side support and at a distance of 'b' from right hand support. Using Castigliano's theorem determine the deflection under the load. Assume uniform flexural rigidity.	CO2	6 M						
Q.2	Solve Any Two of the following.								
A)	Find the support moment for propped cantilever of span '5 m' subjected to clockwise moment '20 kN-m' at the prop end. Draw BMD?	CO2	6 M						
B)	A fixed beam of span '10 m' subjected to an external clockwise moment '30 kN-m' at a distance '4 m' from one of its fixed supports and at a distance '6 m' from other end fixed support. Determine the end moments developed.	CO2	6 M						

C)	A continuous beam ABC of span 10 m long (Span AB - 6 m and Span BC- 4 m rests on three supports A, B and C at the same level subjected to point load 3 kN at distance of 2 m from support A and UDL of 1 kN/m over a span of BC. Determine the moments over the beam and draw bending moment diagram. Also Calculate the reactions at the supports and draw the shear force diagram? Use theorem of three moments.	CO2	6 M
Q. 3	Solve Any Two of the following.		
A)	Define the following terms: I. Absolute and Relative stiffness of member II. Carry over factor (COF) III. Distribution Factor (DF)	CO 1	6 M
B)	A two-span fixed continuous beam ABC of span 12 m long having span AB - 6 m and span BC- 6 m rests on three supports A (fixed), B (hinged) and C (fixed) at the same level. Span AB is subjected to a UDL of 30 kN/m having MI as 3I and Span BC is subjected to 72 kN at distance of 2 m from support C. Analyze the two-span continuous beam by moment distribution method and draw bending moment and shear force diagrams. Also draw an Elastic curve.	CO 1	6 M
C)	A two-span fixed continuous beam ABC of span 12 m long having span AB - 8 m and span BC- 4 m rests on three supports A (fixed), B (hinged) and C (hinged) at the same level. Span AB is subjected to UDL of 20 kN/m having MI as 2I and Span BC is subjected to 60 kN at distance of 2 m from support C. Analyze the two-span continuous beam by moment distribution method and draw bending moment and shear force diagrams. Also draw an Elastic curve.	CO 1	6 M
Q.4	Solve Any Two of the following.		
A)	Determine the support moments for the continuous beam as shown in the below fig 4.1 (A) by slope deflection method. The relative values of moment of inertia are shown in the fig as below. E is constant. $\frac{1}{1} \underbrace{ \begin{array}{c} 2.5 \text{ m} \\ 1 \end{array}}_{1} \underbrace{ \begin{array}{c} 20 \text{ kN/m} \\ 1 \end{array}}_{2} \underbrace{ \begin{array}{c} 20 \text{ kN/m} \\ 7.5 \text{ m} \end{array}}_{7.5 \text{ m}} \underbrace{ \begin{array}{c} 31 \end{array}}_{7.5 \text{ m}} \underbrace{ \begin{array}{c} 31$	CO 4	6 M
B)	A continuous beam is supported and loaded as shown in fig 4.2 (B) as below. During loading support 2 sinks by 10 mm. Analyze the beam for support moments and reactions. $E = 200 \times 10^6 \text{ kN/m}^2$ and $I = 100 \times 10^{-6} \text{ m}^4$ constant throughout.	CO 4	6 M

	Fig No. 4.2 (B) – Two span continuous beam with overhang on one side having a sinking support						
C)	Solve the frame shown below fig 4.3 (C) using slope deflection method and draw the BMD. U.D.L. = w per unit length Length of members is 4 m each. Assume uniform EI for all members.	CO 4	6 M				
	Fig No. 4.3 (C) – Frame and loading						
0.5	Solve Any Two of the following.						
A)	A suspension bridge is of 160 m span. The cable has a dip of 12 m. The cable is stiffened by a three hinged girder with hinges at either end and at center. The dead load of the girder is 15 kN/m. Find the greatest positive and negative bending moments in the girder when a single concentrated load of 340 kN passes through it. Also find the maximum tension in the cable.						
B)	A suspension cable of 75 m horizontal span and central dip of 6 m has a stiffening girder hinged at both ends. The dead load transmitted to the cable including its own weight is 1500 kN. The girder carries a live load 30 kN/m uniformly distributed over the left half of the span. Assuming the girder to be rigid, calculate the SF and BM in the girder at 20 m from left support. Also find the maximum tension in the cable.						
C)	The maximum tension in the cable.CO 4A thin cylinder closed at both ends is subjected to an internal pressure of 2 MPa.CO 4Internal diameter is 1 m and the wall thickness is 10mm. What is the maximum shear stress in the cylinder material?CO 4						
	**** End ****						

	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE							
	Supplementary Examination – Summer 2022							
	Course: B. Tech. Branch : CE Semes	ter :IV						
	Subject Code & Name: BTCVE404A (Numerical Methods in Engineering)							
	Max Marks: 60 Date: Duration: 3 H	[r.						
	 Instructions to the Students: 1. All the questions are compulsory. 2. The level of question/expected answer as per OBE or the Course Out which the question is based is mentioned in () in front of the question 3. Use of non-programmable scientific calculators is allowed. 4. Assume suitable data wherever necessary and mention it clearly. 	come (CO) on $1.$	Marka					
0.1		(Level/CO)	Marks					
Q. 1	Solve Any Two of the following.							
(A)	Apply the Gauss-Jordan method to solve the equations. x + y + z = 9 2x - 3y + 4z = 13	CO1						
	3x + 4y + 5z = 40							
B)	Apply the Gauss-Seidel method to solve the equations.							
	20x + y - 2z = 17 3x + 20y - z = -18 2x - 3y + 20z = 25	CO1						
C)	Solve the equations by using Cholesky method'							
	x + 2y + 3z = 5 2x + 8y + 22 z = 6 3x + 22y + 82z = -10	CO1						
Q.2	Solve Any Two of the following.							
A)	Find the root of the equation $\cos x = xe^x$ using the bisection method correct to four decimal places.	CO2						
B)	Find a root of the equation $x^3 - 2x - 5 = 0$ using the secant method	CO2						
C)	Using modified Euler's method, find an approximate value of <i>y</i> when $x = 0.3$, given that $dy/dx = x + y$ and $y = 1$ when $x = 0$.	CO2						
Q. 3	Solve Any One of the following.							
A)	Using Newton's divided differences formula, evaluate f(8) and f(15) given: x 4 5 7 10 11 13 Y 48 100 294 900 1210 2028	CO3						
B)	Find the polynomial $f(x)$ by using Lagrange's formula and hence find $f(3)$ forx0125y2312147	CO3						

C)	Evaluate the integral $\int_0^1 \frac{x^2}{1+x^3} dx$ using Simpson's 1/3 rule. Compare CO2								
	the error with the exact value.								
Q.4	Solve A	Any Tv	vo of the	followi	ing.				
A)	Calculate Mean and Standard Deviation for the data: CO3								
	X	0-10	10-20	20-30	30-40	40-50)		
	(x)	5	7	10	16	11			
B)	If P is t	the pull	require	ed to lift	a load V	V by me	ans of a pulley block, find		
	a linea	r law o	f the for	m P = n	nW + c co	onnectir	g P and W, using the fol-		
	lowing CO3								
	data:								
	P	P 12 15 21 25							
	VV T''	50	/0	100	120	, , , , , , , , , , , , , , , , , , ,	1		
C)	Fit a second degree parabola to the following data:								
	v	0	1	2	2	Λ	1	CO3	
		1	18	13	2	63	-		
	1	1	1.0	1.5	2	0,5			
0.5	Solve /	Any Or	e of the	followi	ng.				
					8 .		1	CO 4	
A)	Write t	he algo	rithm fo	r Newto	n Raphso	on Metho	od.	CO4	
B)	Write the algorithm for Euler's Method.CO4								
C)	Write t	he algo	rithm fo	r Trapez	zoidal Ru	le.		CO4	
					;	*** End	***		

The grid and the borders of the table will be hidden before final printing.

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE **Supplementary Examination – Summer 2022** Course: B. Tech. **Branch: Civil Engineering** Semester : IV Subject Code & Name: BTCVE404B Planning for Sustainable Development Max Marks: 60 Date: 15/01/2023 **Duration: 3 Hr.** Instructions to the Students: 1. All the questions are compulsory. 2. Use of non-programmable scientific calculators is allowed. 3. Assume suitable data wherever necessary and mention it clearly. Marks Q.1 Solve Any Two of the following. A) Define the concept of sustainable development. Why it is necessary? 06 **B**) Explain the principles of sustainable development. 06 C) Describe the evolution of ideas about sustainability 06 Q.2 Solve Any Two of the following. A) Explain the key Components in Sustainable Development. 06 **B)** What are the different strategies for promoting the sustainable development? 06 C) Write down the current environmental issues in India. What are the 06 initiatives taken by government to tackle Environmental degradation? Q. 3 Solve Any two of the following. A) Describe national innovation system. 06 **B**) Describe briefly: 06 a. Environmental Management System b. B Environmental Impact Assessment 06 C) Write down the various Goals of Sustainable Development. Q.4 Solve the following. A) Write a short note on Societal Theories and Institutional theory of 06 Sustainable development. **B**) What are the measures taken by India to implement Sustainable 06 development? Also write down the challenges for attaining the Sustainable Development goals. Q. 5 Solve the following.

A)	Write a short note on: (any two)	08
	1. Research in Sustainable Development	
	2. Sustainable transport	

3. Policy Responses to Environmental DegradationB) Explain briefly Governance for sustainable development

*** End ***