DR. AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

SUPPLIMENTRY EXAMINATION- SUMMER 2024

Course: - B-Tech	Branch:-Civil Engineering	Semes	ster:-VI
Subject code & Name: BTCVC602_	Y18 Foundation Engineering		
Max. Marks: 60	Date: 15/06/2024	Duration:	3.00 hr.
Instruction to the students:-			
 All the questions are computed. The level of question/ expect question is based is mentioned. Use of non-programmable science. Assume suitable data whenever. 	sory. ed answer as per OBE or the course outcome of ed in () in front of the question. ientific calculator is allowed. ver necessary.	(CO)on whi	ich the
Q.1 Solve any two of the following	ng. (I	Level/CO)	Marks
 A. Enlist different soil explor B. Enlist and explain the geo C. In a geophysical exploration And V₂= 900 mps and the Determine the depth of the 	ration methods & explain any one in details physical methods of soil exploration on, the time distance plot gave V_1 = 320 mps. break in the plot was located at 35 m. e overburden.	C01 C01 C01	6 6 6
Q.2. Solve any two of the followin	g.		
A. What are the assumption i	nade in Terzaghi's analysis of bearing capacit	y CO2	6
of continuous footing. B. Explain the plate load test C. A strip footing, 1 M wide the ground surface. The pr	in details with neat sketch at its base is located at a depth of 0.9m below operties of foundation soil are $\gamma = 17.70$ KN/M	CO2	6
$C = 20 \text{ KN/M}^2$ and $\phi = 19$ Safety = 2.5		CO2	6
Q.5. Solve any two of the following.	nlain under what sincumateness mot facting is		
A. Define mai footing and ex	prain under what circumstance that rooting is	CO^{2}	C
adopted.	· · · ·	003	0
 B. What is problem associate C. Design a combined rectan And 4250 KN at 6.2 M spa of 350 KN/M². Lighter col property line. Assume col 	d with expensive soil. gular footing to carry column load 0f 3500 KM acing on a sandy soil with allowable soil press umn is at a distance of 350 MM clear from the umn size 500 MM x 500 MM	CO3 V ure e CO3	6
Q.4. Solve any two of the following.			
A. Write short notes: shape a	nd factors deciding shape of caisson foundation	on. CO4	6
B. Explain in details the conc	cept of Negative skin friction	CO4	6
C. Discuss with sketches the equipment's used for this p	construction of under-reamed piles and the purpose.	CO4	6

Q.5. Solve any two of the following.

A. What are the different types of soil failure?	CO5	6
B. Discuss the causes of soil slope failure	CO5	6
C. Explain the Swedish circle method of analysis of slope failure.		6

Dr. Babasaheb Ambedkar Technological University, Lonere **Regular and Supplementary - Summer 2024**

Course: B. Tech. Subject Code & Name: BTCVC602_Y22 Foundation Engineering Max Marks: 60 Date:15/06/2024 Time: 3Hr. Instructions to the Students: 1. All the questions are compulsory. 2. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. 3. Use of non-programmable scientific calculators is allowed. 4. Assume suitable data wherever necessary and mention it clearly. (Level/CO) Marks Q.1 Solve <u>any two</u> of the following. 12 A) What are the purposes of soil exploration? Remember 06

- Understand Draw the neat sketch of soil sampler showing its components. Explain the **B**) 06 below terms associated with it: 1) Area Ratio, 2) Inside Clearance & 3) Outside clearance
- A sampling tube has inner diameter of 80 mm and cutting edge of inner di-Apply & C) 06 ameter 70 mm. it has outside diameter of sampling tube and cutting edge are analyze 83 mm and 86 mm respectively. **Determine the**

1) Area Ratio, 2) Inside Clearance & Outside clearance of the sampler.

The tube is pushed at the bottom of the bore hole to a distance of 600 mm with the length of sample collected as 550 mm. Find the recovery ratio and comment on the results.

Q.2 Solve <u>any two</u> following questions.

- A) What are the general modes of bearing capacity failure of a footing. Explain Understand 06 in detail with sketches?
- A strip footing of width 3 m is located at a depth of 1.40 m below the moist **B**) Apply 06 soil having cohesion $c = 20 \text{ kN/m}^2$ and angle of internal friction $\phi = 30^\circ$. Take FOS = 2.5, $\gamma = 18 \text{ kN/m}^3$, $\phi = 30^{\circ}$, N_c = 37.2, N_q = 22.5 and N γ = 19.7 Determine (a) Ultimate bearing capacity, (b) Net safe bearing capacity, and (c) Gross safe bearing capacity Use the general shear failure theory of Terzaghi.
- C) A strip footing of width 1.5 m resting on a saturated clay { $C_u = 30 \text{ kN/m}^2$, Analyze **06** $\phi_u = \mathbf{0}^0$, $\gamma_{sat} = 20 \ kN/m^3$ } is located at a depth of 2 m below ground level. The water table is also at a depth of 2 m from the ground level. Determine the ultimate bearing capacity of footing by using Terzaghi's Theory. If the water table rises by 1 m, calculate the percentage reduction in the ultimate bearing capacity.

Branch: Civil Engineering

Semester: VI

12

Q. 3	Solve <u>any two</u> of the following.		12
A)	What are expansive soils? Explain in detail the characteristics of expansive soils?	Understand	06
B)	Define and explain the following terms:	Remember	06
	A) Swelling PressureC) Free Swell		
C)	Write a short note on settlement of shallow foundations?	Understand	06
Q.4	Solve <u>any two</u> of the following.		12
A)	State and explain in detail the Engineering News Record Formula (ENR) and Hiley's Formula?	Remember	06
B)	A precast concrete pile of size 30 cm x 30 cm is to be driven into clay strata whose unconfined compressive strength is 80 kN/m ² . Compute the length of pile required to carry a safe working load of 400 kN with factor of safety of 2.5. Assume adhesion factor α as 0.6 and $N_c = 9.0$	Apply	06
C)	A 10 m long 300 mm diameter pile is driven in a uniform deposit of sand $(\phi = 38^{\circ})$. The water table is at great depth and is not likely to rise. The average dry unit weight of sand is 18 kN/m ³ . Calculate the safe load capacity of the pile with factor of safety of 2.5. Use N _q = 137	Analyze	06
Q. 5	Solve <u>any two</u> of the following.		12
A)	What are the different types of slopes. Explain in detail with neat sketch and example?	Understand	06
B)	Enlist and explain in detail the different types of slope failures?	Understand	06
C)	An infinitely long slope in dense sand having an inclination of 28° to the	Apply	06
	horizontal. Compute the factor of safety against shear failure if the angle of		
	internal friction of the soil is 33°		
	*** End ***		

103.134.110

	DR. BABASAHEB	AMBEDKAR TECHNOLOGICAL UN	IVERSITY, LONERE	
	S	Supplementary Summer Examination 20)24	
	Course: B.Tech.	Branch: Civil Engineering	Semester: VI	
	Subject Code & Nam	e: BTCVC603_Y18 Concrete Technolog	y	
	Max Marks: 60	Date:19/06/2024	Duration: 3 Hr.	
	 Instructions to the Stu 1. All the question 2. The level of que which the quest 3. Use of non-pro 4. Assume suitable 	<i>dents:</i> as are compulsory. estion/expected answer as per OBE or the tion is based is mentioned in () in front of t grammable scientific calculators is allowe e data wherever necessary and mention it o	Course Outcome (CO) on he question. d. clearly. (CO)	Marks
Q. 1	Solve Any Two of the	following.		12
A)	Explain procedure for	determining final Setting time of Cement.	CO 1	6
B)	Explain bulking of San	ıd.	CO 1	6
C)	Define Cement. Explai	n its types.	CO 1	6
Q.2	Solve Any Two of the	following.		12
A)	Define batching. Write	a note on Volume batching.	CO 1	6
B)	Illustrate Curing of Co	ncrete in detail.	CO 1	6
C)	Define Workability. Ex	xplain Slump Cone Test with diagram	CO 2	6
Q. 3	Solve Any Two of the	following.		12
A)	Define Admixture. Exp	plain functions of Admixture.	CO 2	6
B)	Illustrate difference be	tween Accelerator & Retarder.	CO 2	6
C)	Write a short note on D	Damp-Proofing Admixtures and Air Entrain	ning Agents CO 2	6
Q.4	Solve Any Two of the	following.		12
A)	What is Creep.? Explai	in factors affecting on it.	CO 3	6
B)	Define: a) Durability b) Fresh Concrete c) Modulus of Elasticity	CO 2	6
	d) Segregation	e) Shrinkage of Concrete f) Bond Strength	1	
C)	Define Concrete. Expla	ain its types.	CO 3	6
Q. 5	Solve Any Two of the	following.		12
A)	Write a short note on S	ulphate Attack and Chloride Attack.	CO 3	6
B)	Explain procedure for	Concrete Mix Design by Indian Standard M	Vethod. CO 3	6
C)	Illustrate Quality Meas	urement in Concrete Construction.	CO 3	6
		*** End ***		

	DR. BABASAHEB	AMBEDKAR TECHNOLOGICAL U	NIVERSITY, LONERE	
	\$	Supplementary Summer Examination –	2024	
	Course: B. Tech.	Branch: Civil Engineering	Semester: VI	
	Subject Code & Nan	ne: BTCVC603_Y22 Transportation H	Engineering	
	Max Marks: 60Date:19/6/2024Duration: 3 Hr.			
	Instructions to the St. 1. All the question 2. The level of question which the question 3. Use of non-pro- 4. Assume suitable	udents: ons are compulsory. iestion/expected answer as per OBE or the stion is based is mentioned in () in front o ogrammable scientific calculators is allow ole data wherever necessary and mention is	e Course Outcome (CO) on f the question. ved. t clearly. (Level/CO)	Marks
Q. 1	Solve Any Two of th	e following.		12
A)	Write an explanatory	note on Highway Planning Survey's	CO1	6
B)	State and explain diffe	erent types of road pattern with diagram.	CO1	6
C)	State and explain clas	sification of road based on materials with	diagram. CO1	6
0.2	Solve Any Two of th	o following		13
Q.2	Define: a) Dight of u	e tonowing.	CO^{2}	12
A)	d) Shoulder	ay 0) Koau Margin () Cannage way	02	0
B)	The speed of overtaki	ng and overtaken vehicles are 70 & 40 km	CO^2	6
D)	respectively on two w	way traffic road. If the acceleration of overt	aking	0
	vehicle is 0.99 m/s^2			
	(i) Calculate safe over	rtaking sight distance.		
	(ii) Mention the minir	num length overtaking zone (Assume t= 2	Seconds)	
C)	Explain overtaking sig	ght distance in detail with diagram.	CO 2	6
,				
Q. 3	Solve Any Two of th	e following.		12
A)	State different types o	of tests carried in the laboratory on the same	ple of CO 3	6
	aggregate to decide th	e suitability for its use in road construction	n and	
	explain any one of the	em in detail.		
B)	Define : a) Bitumen b) Asphalt c) Tar d) Emulsion e) Cutback f) Road Oil CO 3	6
C)	In the Marshall metho	od of mix design the coarse aggregate, fine	aggregate, CO 3	6
	filler and bitumen hav	ving respective specific gravities of 2.62,2	2.72, 2.70	
	&1.02 are mixed in th	ne ratio 55,34.6,4.8 and 5.6 percent respect	ively. What	
	will be the theoretical	specific gravity of the mix?		

Q.4 Solve Any Two of the following.

A)	Write a note on Speed Studies.	CO 4	6
B)	State and explain the methods for collecting origin and destination data.	CO 4	6
C)	What is Traffic Engineering? Explain traffic characteristics.	CO 4	6
Q. 5	Solve Any Two of the following.		12
A)	Explain different components of pavement with its function?	CO 5	6
B)	Explain the advantages and limitations of CBR method of design.	CO 5	6
C)	Explain types of joints in Cement concrete road.	CO 5	6
	*** End ***		

		Regular & Supplementary Summer 2024		
	Course: B.Tech.	Branch: Civil Engineering	Semester: VI	
	Subject Code & Nam	ne: BTCVOE605D Composite Materials		
	Max Marks: 60	Date:25/06/2024	Duration: 3 Hr.	
	 Instructions to the Stule 1. All the question 2. The level of question 2. The level of question 3. Use of non-product 4. Assume suitable 	udents: ons are compulsory. uestion/expected answer as per OBE or the Coun stion is based is mentioned in () in front of the q ogrammable scientific calculators is allowed. le data wherever necessary and mention it clear	rse Outcome (CO) on uestion. rly. (CO)	Marks
Q. 1	Solve Any Two of the	e following.		12
A)	Define Composite mar rial.	terial & draw flow chart for classification of Co	mposite mate- CO 1	6
B)	Illustrate difference be	etween Thermosets and Thermoplastic.	CO 1	6
C)	Write a short note on I	Fiber reinforced composites and laminar compo	sites. CO 1	6
Q.2	Solve Any Two of the	e following.		12
A)	Define glass fiber. Exp	plain its types.	CO 1	6
B)	Illustrate difference be	etween Nomex and Kevlar.	CO 1	6
C)	Explain ceramic fiber	with flow chart of manufacturing process.	CO 2	6
Q. 3	Solve Any Two of the	e following.		12
A)	Illustrate difference be Composites (MMC).	etween Polymer Matrix Composites (PMC) and	Metal Matrix CO 2	6
B)	What are Particulate C	Composites? Explain its applications.	CO 2	6
C)	Write a short note on 0	Cabon fiber composites and Fiber reinforced po	lymer. CO 2	6
Q.4	Solve Any Two of the	e following.		12
A)	Explain autoclave mol	lding method of manufacturing for Composite n	naterial. CO 1	6
B)	Explain filament weld	ling with its advantages and dis- advantages.	CO 2	6
C)	Explain in short: a) Re	esin Transfer molding b) Pre-peg layer c) Baggi	ng films. CO 2	6
		сн. ·		14
Q. 5	Solve Any Two of the	e tollowing.		12
	Explain necessity for i	mechanical testing of composite material.	CO 3	6
A)		1 4 4 1		-

*** End ***

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE - RAIGAD 402103 Regular & Supplementary Summer 2024

Branch: B. Tech.	Branch: Civil Engineering	Semester: - VI
Subject: BTCVPE604F	Structural Audit	Marks: 60
Date:- 21/06/2024		Duration: 3 Hrs.

Instructions to the Students:

- 1. Each question carries 12 marks.
- 2. Attempt any **five** questions of the following.
- 3. Illustrate your answers with neat sketches, diagram etc., whenever necessary.
- 4. If some part or parameter is noticed to be missing, you may appropriately assume it and should mention it clearly.

		(Marks)
Q.1	State Structural Audit, Objectives and Bye Laws in detail.	(12)
Q.2	Write down causes and types of deterioration in structures.	(12)
Q.3	Explain Rebound Hammer Test with advantages, application and limitation in detail.	(12)
Q.4	Write down about Fire damages Assessment in detail.	(12)
Q.5	What are the point consider for preparation of structural Audit Report of RCC Structures.	(12)
Q.6	Explain Strength Evaluation of Existing Structures in detail.	(12)

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Regular and Supplementary Summer 2024

	Kegular	and Supplementary Summer 2024			
	Course: B. Tech		Semester: VI		
	Branch: Electrical Engineerin	ng/Electrical and Electronics Engineering			
	Subject Code and Name: BTI	EEC602_Y19 Principles of Electrical M	achine Design		
	Max Marks: 60 Date: 15/06/2024 Duration: 3Hr				
	Instructions to the Students:				
	1. All the questions are comp	pulsory.			
	2. The level (K1-Remember	ing, K2- Understanding, K3 – Applying, K4 – A	nalyzing, K5 –		
	Evaluating, K6 - Creating	g) of question or expected answer as per OBE or t	he course		
	outcome (CO) on which the	he question is based is mentioned in front of each	1 question.		
	3. The use of non-programm	nable scientific calculators is allowed.			
	4. Assume suitable data whe	erever necessary and mention it clearly.			
			(CO/Level)	Marks	
Q. 1	Solve Any Two of the following.			12	
A)	Discuss the limitations considered	d with designing the electrical machine.	CO1/K2	6	
B)	Explain the nameplate of rotating	machines as per standards.	CO1/K2	6	
C)	Discuss the insulating materials cl	lass based on thermal consideration.	CO1/K2	6	
Q. 2	Solve Any Two of the following.	77		12	
A)	Illustrate a design procedure for l	lifting magnet design with relevant formulae.	CO2/K3	6	
B)	A 250 V, 37 kW, DC shunt motor	r has to exert a maximum torque of 150% of full	CO2/K3	6	
	load torque during the starting per	riod. The resistance of the armature circuit is 0.2			
	Ohm, and the full load efficiency	is 84%. The number of studs is 8. Determine ;			
	a) The upper and lower limits of c	current during the starting			
	b) The resistance of each section				
C)	Show the simplex two-layer wave	-wound armature with a winding table of a 4-pole	CO3/K3	6	
	generator with 26 conductors.				
Q. 3	Solve Any Two of the following.	<u>e</u>		12	
A)	The thermal conductivity of asser	mbled armature laminations is 20 times as great	CO4/K3	6	
	along the direction of laminatio	ons as in the direction across the laminations.			
	Calculate the loss that will be con	nducted across the laminations in a stack 40 mm			
	thick and 6000 mm ² in cross- se	ection with a difference of 20°C. Given that a			

difference of 5° C will cause 25 W to be conducted through a cross-section of 2500 mm² in area and 20 mm thick measured along the laminations.

B)	A 50 MVA turbo-alternator has a total loss of 1500 kW. Calculate the volume of	CO4/K3	6
	air required per second and also the fan power if the temperature rise in the machine		
	is to be limited to 30 °C. The other data given is;		
	Inlet temperature of air = $25 ^{\circ}$ C,		
	Barometric = 760 mm of mercury,		
	Pressure = 2 kN/m^2 ,		
	Fan efficiency = 0.4 .		
C)	Show various types of ventilating systems in accordance with the provision of	CO4/K3	6
	cooling ducts and how the air passes over the heated part of the machine.		
Q. 4	Solve Any Two of the following.		12
A)	Illustrate the types of tests performed on transformers as per the Standards for	CO5/K3	6
	estimation of leakage reactance, resistance of winding, no load current, and losses.		
B)	Determine winding parameters for a 100 KVA, 11KV/415 V, 50Hz, three-phase	CO5/K3	6
	delta/star core type distribution transformer. Assume flux density = 1.2 T, current		
	density = 2.5 A/mm ² , window space factor = 0.28, and constant $K = 0.45$ for three-		
	phase core-type distribution transformers. Use a four-step core.		
C)	Illustrate the step-by-step design procedure for the magnetic frame of a three-phase	CO5/K3	6
	power transformer with relevant formulas.		
Q. 5	Solve Any Two of the following.		12
A)	Describe objective parameters for the computer-aided optimal design of a	CO6/K2	6
	transformer with the help of its flowchart.		
B)	Discuss the advantages and disadvantages of various approaches to computer-aided	CO6/K2	6
	design.		
C)	Explain objective parameters for the computer-aided optimal design of a DC	CO6/K2	6
	machine with the help of its flowchart.		

*** End ***

DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE **Regular & Supplementary Summer 2024 Course: B. Tech Branch: Electrical Engineering and Allied Branches** Semester: VI Subject Code and Name: BTEEC602_Y22 **Electrical Machine Design** Max Marks: 60 **Duration: 3 Hr.** Date: 15/06/2024 **Instructions to the Students:** 1. All the questions are compulsory. 2. The level (K1-Remembering, K2- Understanding, K3 – Applying, K4 – Analyzing, K5 – Evaluating, K6 - Creating) of question or expected answer as per OBE or the course outcome (CO) on which the question is based is mentioned in front of each question. 3. The use of non-programmable scientific calculators is allowed. 4. Assume suitable data wherever necessary and mention it clearly. (CO/Level) Marks Solve Any Two of the following. 12 0.1 **Explain** the limitations considered with designing the electrical machine. **CO1/K2** 6 A) Describe the nameplate of rotating machines as per standards. B) CO1/K2 6 C) Discuss the insulating materials class based on thermal consideration. CO1/K2 6 Q. 2 Solve Any Two of the following. 12 **Illustrate** a design procedure for choke (coil) design with relevant formulae. **CO2/K3** 6 A)

- B) A 250 V, 37 kW, DC shunt motor has to exert a maximum torque of 150% of full CO2/K3 6
 load torque during the starting period. The resistance of the armature circuit is 0.2
 Ohm, and the full load efficiency is 84%. The number of studs is 8. Determine;
 - a) The upper and lower limits of current during the starting
 - b) The resistance of each section
- C) Show the simplex lap-wound armature with a winding table of a 4-pole generator CO2/K3 6 with 24 conductors.

Solve Any Two of the following. 12 0.3 Model an output equation for the three-phase induction motor. 6 **A**) **CO3/K3** Compute the main dimensions of the of a 5 h.p., 400 V, 3-phase, 4-pole squirrel B) **CO3/K3** 6 cage induction motor using star-delta starter. Assume the following data: Average flux density in the air gap = 0.46 Wb/m^2 Ampere conductors per meter of armature periphery = 22000Full load efficiency = 83%Full load p.f. = $0.84 \log$

Winding factor = 0.955Stacking factor = 0.9Current density = 4 A /mm^2 No. of slots per poles per phase = 3 L / t = 1.5

C) Illustrate the procedure of computation of losses in rotor bars and end ring of CO4/K3 6 inductor machine.

12

6

Q. 4 Solve Any Two of the following.

- A) The thermal conductivity of assembled armature laminations is 20 times as great CO5/K3 along the direction of laminations as in the direction across the laminations. Calculate the loss that will be conducted across the laminations in a stack 40 mm thick and 6000 mm² in cross- section with a difference of 20°C. Given that a difference of 5°C will cause 25 W to be conducted through a cross-section of 2500 mm² in area and 20 mm thick measured along the laminations.
- B) A 50 MVA turbo-alternator has a total loss of 1500 kW. Calculate the volume of CO5/K3 6 air required per second and also the fan power if the temperature rise in the machine is to be limited to 30 °C. The other data given is;

Inlet temperature of air = $25 \circ C$,

```
Barometric = 760 mm of mercury,
```

Pressure = 2 kN/m^2 ,

Fan efficiency = 0.4.

C) Show various types of ventilating systems in accordance with the provision of CO5/K3 6 cooling ducts and how the air passes over the heated part of the machine.

Q. 5	Solve Any Two of the following.		12
A)	Illustrate the types of tests performed on transformers as per the Standards for	CO6/K3	6
	estimation of leakage reactance, resistance of winding, no load current, and losses.		
B)	Determine winding parameters for a 100 kVA, 11 kV/415 V, 50 Hz, three-phase	CO6/K3	6
	delta/star core type distribution transformer. Assume flux density = 1.2 T, current		
	density = 2.5 A/mm ² , window space factor = 0.28, and constant $K = 0.45$ for three-		
	phase core-type distribution transformers. Use a four-step core.		
C)	Illustrate the step-by-step design procedure for the magnetic frame of a three-phase	CO6/K3	6
	power transformer with relevant formulas.		

*** End ***