	DR. BABASAH	EB AMBEDKAR TECHNOLOGICAL UNIVERSITY	, LONERE	
	Sup	plementary End Semester Examination – Winter 2023		
	Course: B. Tech.	Branch: Civil Engineering and Allied Branches	Semester: IV	
	Subject Code & N	ame: BTCVC406/BTCIC406/BTCEC406 Engineering	Geology	
	Max Marks: 60	Date:29/01/2024 Duration: 3	3.00 Hr.	
	Instructions to the 1. All the ques 2. The level of which the q 3. Use of non- 4. Assume suit	Students: stions are compulsory. ^c question/expected answer as per OBE or the Course Out uestion is based is mentioned in () in front of the question programmable scientific calculators is allowed. table data wherever necessary and mention it clearly.	come (CO) on a. (Level/CO)	Marks
Q. 1	Solve Any Two of	the following.		
A)	Write short notes o a. Dendritic d b. Sand dune c. Weathering	n: - rainage pattern	(CO1)	6
B)	Write a note on inte	erior of the earth with neat labelled diagram.	(CO1)	6
C)	Give detailed note amples.	on types of mountains and their origin with suitable ex-	(CO1)	6
Q.2	Solve Any Two of	the following.		
A)	Write a short note of a. Marble b. Conglomera c. Metamorph	on: - ate ism	(CO2)	6
B)	What are the physiminerals?	ical properties of minerals useful for the identification of	(CO2)	6
C)	Write the classifica	tion of Igneous rocks based on depth, silica and texture.	(CO2)	6
Q. 3	Solve Any Two of	the following.		
A)	Write a short note of a. Joints b. Aquifer	on: -	(CO3)	6
B)	Define the term unconformities.	n "unconformity" and describe various types of	E (CO1)	6
C)	What are the geolo	gical faults and their various types?	(CO3)	6

Q.4	Solve Any Two of the following.		
A)	Write a short note on: -	(CO1)	6
	a. RQD		
	b. Sampling technique		
B)	c. Surface Investigations Explain the complete procedure of engineering geological investigation.	(CO3)	6
C)	Write a detailed note on various drilling techniques used for the collection of samples.	(CO2)	6
Q. 5	Solve Any Two of the following.		
A)	Write a short note on: -	(CO4)	6
	a. Gravity dam		
	b. Suspension bridge		
	c. Tunnel Boring Machine		
B)	What are the major geological factors affecting the selection site for the dam?	(CO3)	6
C)	Explain the various favourable and unfavourable geological conditions for	(CO4)	6
	reservoir site.		

*** End ***

	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE				
	Supplementary	Winter Examination – 2023			
	Course: B. Tech. Branch : Civil a	and Allied Engineering			
	Semester : IV				
	Subject Code & Name: BTCVC4	01 & Building, Planning and Drawing			
	Max Marks: 60 D	Date:16-01-24 Dura	tion: 3 Hr.		
	Instructions to the Students:	,			
	 All the questions are computed The level of question/expected which the question is based to Use of non-programmable so 	isory. ed answer as per OBE or the Course Out is mentioned in () in front of the questior cientific calculators is allowed.	come (CO) on 1.		
	<i>4. Assume suitable data where</i>	ver necessary and mention it clearly.			
			(Level/CO)	Marks	
Q.1	Solve Any Two of the following.			12	
A)	Define Roominess. State general no	orms for the ratio between length and	CO1	6	
	width. State effect of shape of room	on roominess.			
B)	Draw developed plan for Figure give	ren below	CO1	6	
	w	W			
		- 11			
	W1 Bedroom	kitchen -			
	-	57.211			
	D2	D1			
	V1 wc	+			
	2 x 1.6 m	Dining W			
	V1 v1 0x16m	3 x 3 m			
		, ,			
	Ļ				
	W1 Bedroom	Living			
	- 3.3 x 3 m	3 x 5 m			
		+			
	· · · · · ·				
		b			
		Wı			
C)	Draw elevation for line plan given in	n Q 1 B	CO1	6	
Q.2	Solve Any Two of the following.			12	
<u> </u>					

A)	Define setback. Discuss the setback with reference to plot size. Also explain how they are useful tool to restrict the percentage built up area.	CO2	6
B)	Write a note on 7/12 abstract, its importance and meaning of every term on it.	CO1	6
C)	Plan a dog legged staircase for a building with the following data. i) Vertical distance between the floors = 3.6 m ii) Size of stair hall 2.5 x 5 m iii)Thickness of the floor slab = 140mm iv)Thickness of the waist slab and landing slab =100mm	CO2	6
Q. 3	Solve Any Two of the following.		12
A)	State different methods of rain water harvesting technique. Explain any one with sketch	CO2	6
B)	Explain with neat sketch layout of water supply and drainage system.	CO2	6
C)	Explain the terms i) Fire load ii) Evacuation time iii) Travel distance	CO2	6
Q.4	Solve Any Two of the following.		12
A)	State classification stone masonry and explain coursed rubble masonry and Random rubble masonry	CO3	6
B)	State principles to be observed during construction of composite masonry	CO3	6
C)	Differentiate between English and Flemish Bond.	CO3	6
Q. 5	Solve Any Two of the following.		12
A)	State criteria for selection of different roof.	CO3	6
B)	Explain king post truss and its joints with neat sketch.	CO3	6
C)	Draw neat sketch of two paneled door and frame door (plan, section & elevation)	CO3	6
	*** End ***		

The grid and the borders of the table will be hidden before final printing.

Supplementary Winter Examination – 2023

Course: B. Tech. Branch : Civil & Allied engineering Semester : IV Subject Code & Name: (BTCEC401/BTCIC401)Building Planning, Drawing & Construction Max Marks: 60 Date:16-01-24 **Duration: 3 Hr.** Instructions to the Students: 1. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. 2. Use of non-programmable scientific calculators is allowed. 3. Assume suitable data wherever necessary and mention it clearly. (Level/CO) Marks Q.1 Solve Any Two of the following. 12 A) Describe the design factors affecting Indian climatic conditions? 6 **B**) Explain aspect & prospect as a principles of planning? 6 C) Mention bye laws used for minimum area & size for habitable room? 6 Q.2 Solve Any Two of the following. 12 A) Which documents are required to take building permission? 6 **B**) Explain importance of sun path diagram? 6 C) What are the criteria for Green Building? 6 Q. 3 Solve Any Two of the following. 12 A) Explain various traps used in drainage system with sketches? 6 B) Describe advantages & dis advantages of conduit wiring? 6 C) Write a note on firefighting system in a building? 6 Q.4 Solve Any Two of the following. 12 A) Describe comparison between stone masonry & brick masonry? 6 B) Describe any two types of partition wall with sketch? 6 C) Draw a plan of 1 ¹/₂ Brick thick wall ('L'shape) in English bond? 6 **Q.5** Solve Any Two of the following. 12 A) Draw a typical elevation & section of frame & paneled door? 6 B) Explain any three types of flooring? 6 C) Draw a labelled sketch of king post truss? 6

*** End ***

	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE				
	Supplementary	Winter Examination – 2023			
	Course: B. Tech. Branch : Civil a	and Allied Engineering			
	Semester : IV				
	Subject Code & Name: BTCVC4	01 & Building, Planning and Drawing			
	Max Marks: 60 D	Date:16-01-24 Dura	tion: 3 Hr.		
	Instructions to the Students:	,			
	 All the questions are computed The level of question/expected which the question is based to Use of non-programmable so 	isory. ed answer as per OBE or the Course Out is mentioned in () in front of the questior cientific calculators is allowed.	come (CO) on 1.		
	<i>4. Assume suitable data where</i>	ver necessary and mention it clearly.			
			(Level/CO)	Marks	
Q.1	Solve Any Two of the following.			12	
A)	Define Roominess. State general no	orms for the ratio between length and	CO1	6	
	width. State effect of shape of room	on roominess.			
B)	Draw developed plan for Figure give	ren below	CO1	6	
	w	W			
		- 11			
	W1 Bedroom	kitchen -			
	-	57.211			
	D2	D1			
	V1 wc	+			
	2 x 1.6 m	Dining W			
	V1 v1 0x16m	3 x 3 m			
		, ,			
	Ļ				
	W1 Bedroom	Living			
	- 3.3 x 3 m	3 x 5 m			
		+			
	· · · · · ·				
		b			
		Wı			
C)	Draw elevation for line plan given in	n Q 1 B	CO1	6	
Q.2	Solve Any Two of the following.			12	
<u> </u>					

A)	Define setback. Discuss the setback with reference to plot size. Also explain	CO2	6
,	how they are useful tool to restrict the percentage built up area.		-
B)	Write a note on 7/12 abstract, its importance and meaning of every term on it.	CO1	6
C)	Mention any six bye -laws required to design a residential building.	CO2	6
Q. 3	Solve Any Two of the following.		12
A)	State different methods of rain water harvesting technique. Explain any one with sketch	CO2	6
B)	Explain with neat sketch layout of water supply and drainage system.	CO2	6
C)	Explain the terms i) Fire load ii) Evacuation time iii) Travel distance	CO2	6
Q.4	Solve Any Two of the following.		12
A)	Draw a working sketch of air conditioning system.	CO3	6
B)	Write a short note on thermal insulation.	CO3	6
C)	Explain Sabine's formula with an example.	CO3	6
Q. 5	Solve Any Two of the following.		12
A)	Describe various methods of noise control.	CO3	6
B)	Write a short note on Green building.	CO3	6
C)	What are the criteria's of Griha Evaluation System in green building.	CO3	6
	*** End ***		

The grid and the borders of the table will be hidden before final printing.

Supplementary Winter Examination – 2023

Course: B. Tech. Branch : Civil Engineering/Civil and Infrastructure Engineering Semester : FOURTH

Subject Code & Name: BTCVC402/BTCIC402 Environmental Engineering

Max Marks: 60 Date:18-01-2024 Duration: 3 Hr.

Instructions to the Students:

- 1. All the questions are compulsory.
- 2. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question.
- 3. Use of non-programmable scientific calculators is allowed.
- 4. Assume suitable data wherever necessary and mention it clearly.

		(Level/CO)	Marks
Q. 1	Solve Any Two of the following.		12
A)	Write a note on physical characteristics of water.	CO1	6
B)	What is demand? Mention factors affecting demand.	CO1	6
C)	Give Indian Standards for quality of potable water.	CO1	6
Q.2	Solve Any Two of the following.		12
A)	What is aeration? List different types of aerators with neat sketch.	CO1	6
B)	Write a note on coagulation and different types of coagulants used.	CO2	6
C)	Describe Lime Soda method of softening of water	CO1	6
Q. 3	Solve Any Two of the following.		12
A)	Write a short note on (i) Dead end system and (ii) Grid iron system	CO1	6
B)	Differentiate between gravity system and pumping system.	CO1	6
C)	State different layouts of water distribution system	CO1	6
Q.4	Solve Any Two of the following.		12
A)	State characteristic of municipal waste water.	CO3	6
B)	Differentiate between Municipal and Industrial waste water	CO3	6
C)	Write a note on Composting.	CO4	6
Q. 5	Solve Any Two of the following.		12
A)	Describe sources and effects of air pollution	CO2	6
B)	List different types of plume behavior with a neat sketch.	CO2	6
C)	Write a short note on control measures of air pollution	CO3	6
	*** End ***		

	Supple	mentary Winter Examination – 202	23		
	Course: B. Tech.	Branch: Civil Engineering	Semeste	er: IV	
	Subject Code & Name:	Structural Mechanics -I (BTCVC	403)		
	Max Marks: 60	Date: 20/01/2024	Duratio	n: 3 Hrs.	
	Instructions to the Studen	ts:			
	1. All the questions a	re compulsory.			
	2. The level of question	on/expected answer as per OBE or the	e Course Outc	ome (CO) on	
	which the question	is based is mentioned in () in front of	f the question.		
	3. Use of non-program	nmable scientific calculators is allow	ed.		
	4 Assume suitable da	ta wherever necessary and mention it	clearly		
	7. 1155 <i>une sullaste da</i>	in wherever necessary and mention h	cicality.	(Level/CO)	Marks
0.1	Solve Any Two of the foll	lowing			12
(\mathbf{A})	Derive the differential equ	ation for Slope and Deflection		CO-1	6
л)	Derive the universitial equi	ation for slope and Deficetion.		00-1	0
B)	A wooden beam 140 mm y	vide and 240 mm deep has a span of 4	l m	CO-1	6
2)	Determine the load that ca	an be placed at center to cause deflection	on of 10	001	Ũ
	mm. Take E as 6 GPa	an de placea at center to cause deficer			
C)	A Horizontal girder having	uniform cross section is 14 m long a	nd is simply	CO-1	6
0)	supported at its end. It carr	ies two concentrated loads as shown i	in fig no 1	001	Ũ
	Calculate the deflection of	the beams under the loads C and D 7	Take $F = 200$		
	GPa and $I = 160 \times 10^6 \text{ mm}$	4	uke E 200		
	12 4				
			В		
	^A ▲ 3 m	6.5 m			
	-	14 m	-		
		Fig. No. I			
0,2	Solve Any Two of the fall	lowing			12
Q.2	Solve Ally I wo of the lon	well's regime cal Theorem		colored colo	12
A)	State and explain the Max	d the deflection of free and of contiler	an haama af	CO-2	0
В)	Using energy theorem, find	a the deflection at free end of cantilev	er beam of	0-2	0
(\mathbf{C})	span I carries a point load a	at the free end and mid span. $50 = 125$ mere as the second span.	!1-	cold	(
C)	A rolled steel joist ISMB 2	250 x 125 mm as shown in fig. carries	a single	0-2	0
	concentrated load of 20 kN	at the right third point over a simply	supported		
	span of 9 m. If the values of	of lixx for the beam is $51.316 \times 10^{\circ}$ mm	n and the		
	values of E for the materia	I is 200 GPa, Calculate by the use of c	conjugate		
	beam method Deflection u	nder the load			
0.3	Solve Any Two of the fall	lowing			12
Q.3	Define determinacy and in	determinacy of structures. Explain in	detail with	CO^3	12
A)	examples	determinacy of structures. Explain in		0-5	0
B)	Calculate the support m	omont and draw BMD and SED for	r a boam ac	CO 3	6
Б)	shown in figure no 6 by u	using three moment theorem	a Dealli as	0-5	0
	shown in figure no o by u	Sok N			
	. 3				
	A	*	A B		
	1	E-1			
	+-2m		-		

C)	A fixed beam of span 'L' subjected to an external clockwise moment 'M' at	CO-3	6
	a distance 'a' from one of its fixed supports and at a distance 'b' from other		
	end fixed support. Determine the end moments developed.		
Q.4	Solve Any Two of the following.		12
A)	Explain the following terms	CO-4	6
	i) Carry Over Factor		
	ii) Distribution factor		
	iii) Stiffness Factor.		
B)	Analyze the frame shown fig. no. 3 for moments at the ends of members.	CO-4	6
	Draw BMD. EI is same for all the members. Use Moment distribution		
	method.		

C) Calculate support moments by moment distribution method for given CO-4 6 continuous as shown in fig. 6 kN

Q. 5	Solve Any Two of the following.		12
A)	State the assumptions made in slope and deflection method for determining	CO-5	6
	the support moments.		
B)	A continuous beam ABC is fixed at A and simply supported at B and C. The	CO-5	6
	Span AB of 6 m and carries a UDL of 100 kN/m. The span BC is 4m carries		
	a UDL of 300 kN/m. Determine the support moments.		
C)	Explain the procedure for analyzing a statical indeterminate structure using	CO-5	6
	slope and deflection method.		
	and a the state		

*** End ***

	DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE				
	Supple	ementary Winter Examination – 2023			
	Course: B. Tech.	Branch: Civil & Allied Engineering	Semester: IV		
	Subject Code & Name:	Structural Mechanics (BTCIC403/BTCEC403	8)		
	Max Marks: 60	Date: 20/01/2024 Duration	on: 3 Hrs.		
	Instructions to the Studen	ts:			
	1. All the questions ar	re compulsory.			
	2. The level of question	n/expected answer as per OBE or the Course Outo	come (CO) on		
	which the question	is based is mentioned in () in front of the question	•		
	3. Use of non-program	nmable scientific calculators is allowed.			
	4. Assume suitable da	ta wherever necessary and mention it clearly.			
			(Level/CO)	Marks	
Q.1	Solve Any Two of the foll	owing.		12	
A)	Derive the equation for S	lope and deflection for the following beams	CO-1	6	
	using Double Integration	Method A simply supported beam of span L			
	subjected to uniformly di	stributed load over entire span.			
B)	A simply supported beam	AB of 2.8 m span carries a point load of 60	CO-1	6	
	kN at a distance of 1 m fr	om the left hand support A. Determine the			
	position of the maximum	deflection of beam. Also find the magnitude			
	of the deflection under th	e load. Take $EI = 4 \times 10^{12} \text{ N-mm}^2$.			
C)	Derive the expression for	stresses in a thin cylindrical shell.	<u> </u>	6	
				10	
Q.2	Solve Any Two of the foll	owing.		12	
A)	State and explain the Stat	tic and Kinematic Indeterminacy.	<u>CO-2</u>	6	
B)	A propped cantilever bea	m 3 m long has 100 mm wide and 150 mm	CO-2	6	
	deep cross section. If the	allowable bending stress and the deflection at			
	the center is 45 MPa and	2.5 mm respectively. Determine the safe UDL			
	the cantilever can carry.	$\frac{1 \text{ ake } E = 210 \text{ GPa.}}{1 \text{ ake } E = 210 \text{ GPa.}}$			
C)	State the procedure to fin	a out the slope and deflection by conjugate	CO-2	0	
	method of a fixed beam c	arrying a UDL			
0.2	Solve Any True of the fall	autin a		10	
Q. 3	Solve Any 1 wo of the foll	owing.		12	
A)	Explain the following ter	IIIS	0-3	0	
	i) Distribution foster				
D)	II) Distribution factor.	et of continuous been as shown in fig. No. 1		6	
D)	by Moment Distribution	It of continuous dealin as shown in fig. No. 1 Mathad Also draw BMD	0-3	0	
	by woment Distribution	30 KN			
	20	DKN/m			
	A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
		3m 1m			
	•				
		Fig. No. 1	<u> </u>		
C)	A fixed beam of span 'L'	subjected to an external clockwise moment	0-3	0	
	from other and fixed sur	Tone of its fixed supports and at a distance b			
0.4	Solvo Any Two of the fall	owing		10	
	Domine the second or for the	UWIIIg.			
A)	Derive the equation for the	ie morizontal thrust and tension in the cable.	0.4	0	
B)	Sketch the shapes of the i	nfluence lines for the support reaction and the	CO-4	6	
	hogging moment at the co	ontinuous support B of a two span continuous			
	beam ABC. Assume the e	xtreme ends A and C to be fully fixed.			

C)	A truck with axle loads of 40 kN and 60 kN on a wheelbase of 5 m rolls across a 10-m span. Compute the maximum bending moment and the maximum shearing force.				olls he	CO-4	6
Q. 5	Solve Any Two of the following.	,					12
A)	State and explain the Matrix me	ethods				CO-5	6
B)	Using matrix stiffness method, analyze the truss for the member forces in the truss loaded as shown in figure. AE and L are tabulated below for all the three members. A 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					CO-5	6
	c	CD	800	800			
C)	Differentiate flexibility method	and stiffness i	nethod.			CO-5	6
		*** End	***				

Supplementary Winter Examination – 2023

Course: B. Tech. Subject Name: Hydraulics - II Max Marks: 60		Branch: Civil Engineering S	Semester: IV		
		S	ubject Code: BTC	ject Code: BTCVC405 ation: 3 Hrs.	
		Date: 25/01/2024	Duration: 3 Hrs.		
 Instructions to the Students: All the questions are compulsory. The level of question/expected answer as per OBE or the Course Outco which the question is based is mentioned in () in front of the question. Use of non-programmable scientific calculators is allowed. Assume suitable data wherever necessary and mention it clearly. 				Marks	
0.1	Solve Any Two of the follo	wing.		12	
A)	Explain open channel flow	and state difference between open channel	flow Remember	6	
	and pipe flow.	r			
B)	Find an expression for the	discharge over a rectangular weir using	neat Remember	6	
	labelled diagram.				
C)	Find the time required to low	ver the water level from 3 m to 1.5 m in rese	rvoir CO 1	6	
	of dimension 70 m X 70 m,	by (i) a rectangular notch of length 2.0 m,	(ii) a		
	right angled V notch is used				
Q.2	Solve Any Two of the follo	wing.		12	
A)	Define - most economical se	ection of channel and derive conditions for	most CO 1	6	
	efficient triangular channel s	section.			
B)	Explain Specific energy and	Specific energy curve with neat diagram.	Understand	6	
C)	Show that, for maximum dis	charge in a rectangular channel, the depth of	flow CO 1	6	
	is 2/3 of the specific energy.				
Q. 3	Solve Any Two of the follo	wing.		12	
A)	State the gradually varied flo	ow assumptions and derive the dynamic equ	ation CO 2	6	
	of gradually varied flow.				
B)	Enlist and give description a	bout types of hydraulic jump.	CO 2	6	
C)	A jet of water, 10 cm diame	ter moves with a velocity of 25 m/s and stri	kes a CO 3	6	
	series of flat plates fixed on t	he periphery of wheel. If due to impact the v	vheel		
	rotates at 100 rpm, calculate	(i) Force exerted by jet on plate, (ii) Work	done		
	on the plate/sec, (iii) Torque	e exerted on wheel if the radial distance at w	vhich		
	jet strikes the plate and axis				
Q.4	Solve Any Two of the follo	wing.		12	
A)	Elaborate major componen Turbine with neat sketch.	t parts of Pelton wheel, Francis and Ka	aplan Remember	6	

B)	A Pelton wheel turbine having a mean bucket diameter of 1.2 m is running at	CO 2	6
	1000 r.p.m. The net head is 840 m. If the side clearance angle is 150 and		
	discharge $Q = 0.12$ m ³ /s. Determine power available at the nozzle and		
	efficiency of a Pelton wheel. Take data - $C_V = 1$.		
C)	Write a note on selection of turbines.	Understand	6
Q. 5	Solve Any Two of the following.		12
A)	How pumps are generally classified and explain in detail working of a	CO 2	6
	centrifugal pump.		
B)	Explain i) Efficiencies of pump	CO 2	6
	ii) Reciprocating pump.		
C)	Describe performance characteristics of centrifugal pumps.	CO 2	6
	*** End ***		