DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Regular & Supplementary Winter Examination-2023

Course: B. Tech.

Semester :III

Branch : Electronics Engineering/Electronics and Telecommunication

Engineering/Electronics and Communication Engineering

Subject Code & Name: BTEXC302/BTETC302 and Electronic Devices and Circuits

Max Marks: 60

Date:04-01-2024

Duration: 3 Hr.

Instructions to the Students:

- 1. All the questions are compulsory.
- The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question.
- 3. Use of non-programmable scientific calculators is allowed.
- 4. Assume suitable data wherever necessary and mention it clearly.

		(Level/CO)	Marks
Q. 1	Solve Any Two of the following.		12
A)	Draw a neat circuit diagram of CB connection. Define a. Find the expression	CO3	6
	for collector current.		
B)	Explain transistor as an amplifier in CE configuration.	CO3	6
C)	Determine V_{CB} in the transistor circuit shown in figure (a). The transistor if silicon and has $\beta = 150$.	CO2/CO3	6

Q.2	Solve Any Two of the following.		12
A)	With a neat diagram, explain the working principle of p-channel	CO2/CO3	6
	D-MOSFET with different cases.		
B)	Give the comparison of FET with MOSFET and BJT.	CO3	6
C)	A JFET has a drain current of 5mA. If IDSS = 10mA and VGS (off) = -6V, find	CO3	6
	the value of (i) V _{GS} and (ii) V _P .		

1

Q. 3	Solve Any Two of the following.		12
A)		CO2/CO4	6
B)		CO2/CO4	6
C)	With a neat diagram explain push-pull class B power amplifier and derive its maximum efficiency.	CO1/CO4	6
Q.4	Solve Any Two of the following.		
A)	Explain voltage series feedback amplifier with a neat diagram. How the	504	12
	overall gain, input impedance, output impedance is affected in these amplifiers.	CO4	6
B)	Explain current series feedback amplifier with a neat diagram. How the input impedance, output impedance are affected in these amplifiers.	CO2/CO4	6
C)	State and explain Barkhausen criterion of oscillations.	CO4	6
Q. 5	Solve Any Two of the following.		12
A)	Draw and explain the Wein Bridge oscillator. Derive the expression for frequency of oscillation.	CO2/CO4	6
B)	Draw and explain the Hartley oscillator. Derive the expression for frequency of oscillation.	CO2/CO4	6
C)	Define voltage regulation. Explain series voltage regulator with a block diagram.	CO4	6

*** End ***