DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Regular & Supplementary Winter Examination-2023

Branch: Electronics and Telecommunication Engineering/ Electronics and Communication Engineering

Course: B. Tech.

Semester: V

Subject Code & Name: BTETC503 Analog Communication

2. The level of question/expected answer as per OBE or the Course Outcome (CO) on

May Mark co		
Max Marks: 60	Date: 05/01/2024	Duration: 3 Hr.
The second secon	Date: USIVITZUZA	Durauon. 5 mi.

Instructions to the Students:

1. All the questions are compulsory.

	which the question is based is mentioned in () in front of the question. 3. Use of non-programmable scientific calculators is allowed. 4. Assume suitable data wherever necessary and mention it clearly.		
		(Level/CO)	Marks
Q. 1	Solve Any Two of the following.		12
A)	Draw block diagram of communication system. Explain all the elements of	CO01	- 6
	communication system in detail.		
B)	Define the sampling theorem and explain its significance in signal processing	CO01	6
	and modulation. Also explain different pulse analog modulation techniques in		
	detail.		
C)	Define modulation? Explain need of modulation in detail.	CO02	6.
Q.2	Solve Any Two of the following.		12
A)	Derive expressions for sideband frequency, modulation index and	CO03	6
	instantaneous voltage equation for SSBSC wave. Also draw time domain and		
	frequency domain (frequency domain) representation for the same.		
B)	Explain Generation of DSBSC signal using of Balanced modulator.	CO03	6
C)	A 300 W carrier is amplitude modulated to a depth of 100%. Calculate the	CO03	6
	total power in case of AM and DSBSC techniques. How much power saving		
	is achieved for DSBSC? If depth of modulation is changed to 75%, then how	A SAN	
	much power is required for DSBSC in both the cases?		- 4
Q. 3	Solve Any Two of the following.		12
A)	Define pre-emphasis and de-emphasis in FM systems. Why are they	CO04	6
	necessary?		
B)	Explain Frequency Modulation in detail with the help of mathematical	CO05	6
	expression of FM, modulation index and frequency deviation.		
C)	In an FM system, when the audio frequency is 525 Hz, and AF voltage is 2.8	CO05	6
	V, the deviation is 3 kHz. If the AF voltage is now increased to 8 V, What is		
	new deviation? Also find the Modulation index in each case.		

Q.4	Solve Any Two of the following.		12
A)	Define tracking and double spotting in the context of receiver tuning. Explain how tracking and double spotting affect the performance of a receiver.	CO04	6
B)	Describe the principle, operation, and advantages of superheterodyne receivers in radio communication systems with the help of block diagram.	CO07	6
C)	Explain the concept and significance of Automatic Gain Control (AGC) in communication systems.	CO07	6
	NAME OF THE OWNER OWNER.	. 42	
Q. 5	Solve Any Two of the following.		12
A)	Solve:	CO07	6
	(i) Calculate the noise voltage at the input of a television RF amplifier, using		
	· a device that has a 200 Ω equivalent noise resistance and a 350 Ω input		
	resistor. The bandwidth of the amplifier is 5 MHz, and the temperature is 17°C.	de la Carta de	
	(ii) The first stage of two stage amplifier has a voltage gain of 10, a 900Ω	described to	
	input resistor, 1800Ω equivalent noise resistance and an 18Ω output		
	resistor. For the second stage, these values are 25Ω , $81k\Omega$, $10k\Omega$ and 1 $M\Omega$, respectively. Calculate the equivalent input noise resistance of this two stage amplifier.	okoma o	
B)	Define Noise. Write short note on (i) Extraterrestrial Noise, (ii) Industrial Noise, and (iii) Transit-time-noise.	CO06	6
C)	Explain (i) Practical Diode Detector, (ii) Ratio Detector	CO06	6

*** End ***